DOI QR코드

DOI QR Code

Kinetic Studies for the Reactions of Pyridine with Benzoylchlorides under High Pressure and High Vacuum

고압 및 고진공에서의 피리딘과 벤조일클로라이드류의 반응에 관한 속도론적 연구

Kim, Se-Kyong
김세경

  • Published : 2004.06.20

Abstract

The reaction rates of para-substituted benzoyl chlorides ($p-CH_3$, p-H, $p-NO_2$) with pyridine have been measured employing the conductometry method in acetonitrile. The pseudo first-order and second-order rate constants were determined at various pressures and temperatures. The activation parameters (${\Delta}V{\ddagger},\;{\Delta}{\beta}{\ddagger},\;{\Delta}H{\ddagger},\;{\Delta}S{\ddagger},\;{\Delta}G{\ddagger}$) and the Hammett ${\rho}$-values are determined from the values of rate constant. The values of ${\Delta}V{\ddagger},\;{\Delta}{\beta}{\ddagger}\;and\;{\Delta}S{\ddagger}$ are all negative. The Hammett ${\rho}$-values are positive for the substrate (${\rho}_Y$) over the given pressure range. The results of kinetic studies, for the pressure and substituent changes, show that these reactions are proceeded by a typical $SN_2$reaction mechanism and its bond formation is favored with elevating pressure.

Keywords

Conductometry;Kinetic;High Pressure;High Vacuum

References

  1. Eckert, C. Rep. Prog. Phys. Chem. 1972, 23, 239.
  2. Evans, M. G.; Polanyi, M. Trans. Faraday Soc. 1935,31, 875. https://doi.org/10.1039/tf9353100875
  3. Ellis, A. J.; Fyfe, W. S.; Rutherford, R. I. J. Chem.Phys. 1959, 31, 176. https://doi.org/10.1063/1.1730290
  4. Guggenheim, E. A. Phil. Mag. 1926, 2, 538. https://doi.org/10.1080/14786442608564083
  5. Kelm, H. High Pressure Chemistry”, NATO ScientificAffairs Division, 1977, 281.
  6. Whalley, E. Advances in Physical Organic Chemistry”, Vol. 2, Academic Press, N.Y. 1964, 93. https://doi.org/10.1016/S0065-3160(08)60289-0
  7. Archer, B. L.; Hudson, R. F. J. Chem. Soc. 1950, 24,3258.
  8. Isaacs, N. S. “Physical Organic Chemystry”, 1st Ed,John Wiley & Sons, N.Y. 1987, 379.
  9. Charton, M. Progr. Phys. Org. Chem. 1973, 10, 81. https://doi.org/10.1002/9780470171899.ch2
  10. Hammett, L. P. J. Am. Chem. Soc. 1975, 19, 156. https://doi.org/10.1021/ja02076a012
  11. Asano, T.; LeNoble, W. J. Chem. Rev. 1978, 407.
  12. Lee, I.; Kim, N. I.; Sohn, S. C. Tetrahedron Lett. 1983,23, 4723.
  13. Bridgman, P. W. “The Physics of High Pressure”, BellLondon, 1952.
  14. Dickson, S. J.; Hyne, J. B. Can. J. Chem. 1971, 49, 2394. https://doi.org/10.1139/v71-391
  15. Hyne, J. B. et. al. J. Am. Chem. Soc. 1966, 88, 2104. https://doi.org/10.1021/ja00962a004
  16. Jenner, G. Angew. Chem. Int. Ed. 1975, 14, 137. https://doi.org/10.1002/anie.197501371
  17. Haberfield, P.; Nudelman, A. J. Org. Chem. 1971, 36, 1792. https://doi.org/10.1021/jo00812a016
  18. Harned, H. S.; Owen, B. B. Physical Chemistry of ElectrolyticSolution”, 3rd Ed, Reinhold, N.Y. 1958, 369.
  19. Tamura, K.; Ogo, Y. Bull. Chem. Soc. Japan, 1973, 46,2988. https://doi.org/10.1246/bcsj.46.2988
  20. Leffler, J. E. J. Org. Chem. 1966, 31, 533. https://doi.org/10.1021/jo01340a043
  21. Moelyn-Hughes, “Kinetics in Solutions”, 1947, 338.
  22. Menschutkin, N. Z. Phys. Chem. 1890, 5, 589.
  23. Benson, S. W.; Berson, J. A. J. Am. Chem. Soc. 1964,86, 259. https://doi.org/10.1021/ja01056a033
  24. Tashma, R.; Rappoport, Z. J. Am. Chem. Soc. 1977, 99,1845. https://doi.org/10.1021/ja00448a028
  25. Kondo, Y.; Tojima, H.; Tokura, N. Bull. Chem. Soc.Japan, 1972, 45, 3579. https://doi.org/10.1246/bcsj.45.3579