DOI QR코드

DOI QR Code

Kinetic Studies on the Reaction of the Homobimetallic Anion, M+5-MeCp)Mn(CO)2Mn(CO)5-(M+=Na+, PPN+) with Allyl Chloride

동종이핵착물인 M+5-MeCp)Mn(CO)2Mn(CO)5-(M+=Na+, PPN+)와 염화알릴간의 반응에 대한 반응속도론적 연구

  • Published : 2004.10.20

Abstract

The homobimetallic anion, $M^+({\eta}^5-MeCp)Mn(CO)_2Mn(CO)_5^-(M^+=Na^+,\;PPN^+)$was disrupted by CH2CHCH2Cl in THF at various temperatures ($20^{\circ}C~50^{\circ}C$) under the pseudo 1st order reaction conditions where excess of allyl chloride was employed under a nitrogen atmosphere. This homobimetallic anion seems to be involved in a concerted reaction mechanism in which a four-centered transition state is proposed. After undergoing the transition state, this reaction eventually leads to (MeCp)Mn$(CO)_3$ on addition of CO and $({\eta}^1-allyl)Mn(CO)_5$, respectively. However, in case of $Na^+$ analog, $Na^+$ may play a novel counter ion effect on the disruption reaction either by transferring one terminal CO from the $Mn(CO)_5$ moiety on to the $({\eta}^5-MeCp)Mn(CO)_2$of the corresponding homobimetallic complex, eventually resulting in $({\eta}^5-MeCp)Mn(CO)_3$ or through the interaction between $Na^+$ and the leaving group (Cl) of allyl chloride. This reaction is of overall second order with respect to homobimetallic complex with the activation parameters (${\Delta}H^{\neq}=17.15{\pm}0.17kcal/mol,\;{\Delta}S^{\neq}=-9.63{\pm}0.10$ e.u. for $Na^+$ analog; ${\Delta}H^{\neq}=22.13{\pm}0.21 kcal/mol,\;{\Delta}S^{\neq}=9.74{\pm}0.19$ e.u. for $PPN^+$ analog reaction).

Keywords

Homobimetallic Complex;Allyl Chloride

References

  1. Roberts, D. A.; Geoffroy, G. L. In Comprehensive Organometallic Chemistry Wilkinson, E. Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, UK, 1982; Vol. 6, Chapter 40, pp 763-877.
  2. Beck, W.; Niemer, B.; Wieser, M. Angew. Chem., Int. Ed. Engl. 1993, 32, 923. https://doi.org/10.1002/anie.199309233
  3. Arndt, L. W.; Darensbourg, M. Y.; Delord, T.; Bancroft, B. T. J. Am. Chem. Soc. 1986, 108, 2617. https://doi.org/10.1021/ja00270a020
  4. Park, Y. K.; Han, I. S.; Huh, T. S. Bull. KoreanChem. Soc. 1990, 11, 221. https://doi.org/10.1007/BF02697387
  5. Collman, J. P. Acc. Chem. Res. 1975, 8, 342. https://doi.org/10.1021/ar50094a004
  6. K. Y. Lee; D. J. Kuchynka and J. K. Kochi, Organometallis,1987, 6, 1886. https://doi.org/10.1021/om00152a010
  7. Rosenberg, S.; Mahoney, W. S.; Hayes, J. M.; Geoffroy, G. L. Organometallics 1986, 5, 1065. https://doi.org/10.1021/om00137a001
  8. Darensbourg, M. Y.; Darensbourg, D. J.; Drew, D. A.;Burns, D. J. Am. Chem. Soc. 1976, 98, 3127. https://doi.org/10.1021/ja00427a011
  9. Casey, C. P.; Bullock, R. M. Organometallics 1984, 3, 1100. https://doi.org/10.1021/om00085a023
  10. Park, Y. K.; Han, I. S.; Kim, J. H.; Lee, C. J.; Baek, Y.O.; Song, G. O. Bull. Korean Chem. Soc. 1994, 15, 537
  11. Gladfeldter, W. L.; Geoffroy, G. L. Adv. Organomet. Chem. 1980, 18, 207. https://doi.org/10.1016/S0065-3055(08)60309-3
  12. R. G. Wilkins, The study of Kinetics and Mechanismof Reactions of Transition Metal Complexes (Boston:Allyn and Bacon, 1974).
  13. Barlow, S.; O'Hare, D. Chem. Rev. 1997, 97, 637. https://doi.org/10.1021/cr960083v
  14. Bullock, R. M.; Casey, C. P. Acc. Chem. Res. 1987, 20, 167. https://doi.org/10.1021/ar00137a002
  15. Park, Y. K.; Lee, Y. G.; Kim, G. S. Bull. Korean Chem.Soc. 1996, 17, 138.
  16. Einstein, F. W. B.; Pomeroy, R. K.; Rushman, P.; Willis,A. C. J. Chem. Soc. Chem. Commun. 1983, 854.
  17. Moro, A.; Foa, M.; Cassar, L. J. Organoment. Chem.1980, 212, C68.
  18. Dirk Tews and PetraEscarpa Gaede, Organometallics 2001, 20, 3869-3875. https://doi.org/10.1021/om010307m
  19. C. A. Tolman, Chem. Soc. Rev., 1972, 1, 337. https://doi.org/10.1039/cs9720100337
  20. Yong Kwang Park, Seon Joong Kim, Chang Hwan Rhee.Bull. Korean Chem. Soc. 1998, 19, 462.
  21. Park, Y. K.; Kim, S. J.; Kim, I. H.; Han, I. S.; Lee,C. H. J. Organomet. Chem. 1991, 408, 193. https://doi.org/10.1016/0022-328X(91)86383-2
  22. Darensbourg, M. Y.; Jimenez, P.; Sackett, J. R.; Hankel, J. M.; Kump, R. L. J. Am. Chem. Soc. 1982, 104, 1521. https://doi.org/10.1021/ja00370a012
  23. Park, Y. K.; Lee, Bull. Korean Chem. Soc. 1994, 15, 436.
  24. Roberts, D. A.; Geoffrory, G. L. in ComprehensiveOrganometallic Chemistry, Wilkinson, G. Ed.; PergamonPress: Oxford, 1982, 763.
  25. Muetterties, E. L.; Krause, M. J. Angew. Chem. Int. Ed. Engl. 1983, 22, 147.
  26. Darensbourg, M. Y.; Jimenez, P.; Sackett, J. R. J. Organomet. Chem. 1980, 202, C68. https://doi.org/10.1016/S0022-328X(00)92684-6
  27. Butler, I. S.; Coville, N. J.; Cozak, D. Inorg. Synth.1978, 19, 188.
  28. Park, Y. K.; Kim, G. S.;Song, G. O. Bull. Korean Chem. Soc. 1995, 16, 310.
  29. Winston, P. L.; Bergman, R. G. J. Am. Chem. Soc.1979, 101, 2055. https://doi.org/10.1021/ja00502a020
  30. Butts, S. B.; Sttauss, S. H.; Holt, E. M.; Stimson, R. E.; Alcock, N. W.; Shriver, D. F. J. Am. Chem. Soc. 1980,102, 5093. https://doi.org/10.1021/ja00535a048