DOI QR코드

DOI QR Code

Hydrothermal Synthesis and Transition Metal Cations Exchange Characterization of Titanium and [Titanium+Alkali Metals] Substituted-11Å Tobermorites

  • El-Korashy, S.A.
  • Published : 2004.04.20

Abstract

Titanium and [titanium+Na(K)] substituted 11${\AA}$ tobermorites solids synthesized under hydrothermal conditions at 180$^{\circ}C$ exhibit cation exchange properties toward heavy transition metal cations, such as Fe$^{2+},\;Zn^{2+},\;Cd^{2+}\;and/or\;Pb^{2+}$. The amount of heavy metal cations taken up by these solids was found in the order: Fe$^{2+}>Zn^{2+}>Cd^{2+}>Pb^{2+}$, and reached maximum at 10% [Ti+K]-substituted tobermorite. The total cation exchange capacity of the 10% Ti+Na (K) - substituted tobermorites synthesized here range from 71 to 89 meq/100 g, and 50-56 meq/100g for Ti-substituted only. Results indicated that 10% [Ti+K] substitution exhibit cation exchange capacity more 2.4 times than the unsubstituted-tobermorite. This is due to the increase of the number of active sites on the exchangers. The incorporation of Ti and/or [Ti+Na(K)] in the lattice structure of synthesized tobermorites is due to exchange of Ti$^{4+}{\Leftrightarrow}2Ca^{2+}\;and/or\;Ti^{4+}+2Na^+(K^+){\Leftrightarrow}3Ca^{2+}$, respectively. The mechanism of Ti and [Ti+Na(K)] incorporations in the crystal lattice of the solids during synthesis and the heavy metal cations uptaken by these solids is studied.

Keywords

11${\AA}$Tobermorite;[Ti+Na] (K)-Substituted Tobermorite;Synthesis;Cation Exchange;Heavy Metals Uptake

References

  1. Shrivastava, O.P.; Komarneni, S. Cem. Concr. Res., 1994,24(3), 573. https://doi.org/10.1016/0008-8846(94)90146-5
  2. Bagosi, S.; Csetenyi, L. J. Cem. Concr. Res., 1998, 28(12), 1753. https://doi.org/10.1016/S0008-8846(98)00163-X
  3. Komarneni, S.; Breval E.; Roy, D.M.; Roy, R. Cem.Concr. Res. 1988, 18, 204. https://doi.org/10.1016/0008-8846(88)90005-1
  4. El-Korashy, S. A.; Al-Wakeel, E. I. Egypt J. Chem.,1999, 42(3), 237.
  5. El-Korashy, S. A., accepted for publication in J. of IonExange (Japan) (In press).
  6. Hamid, S. N., Kristallogr Z, 1981, 145, 189.
  7. Okada, Y; Ishida, H; Mitsuda, T. J. Amer. Ceram. Soc.1994, 76(3), 765.
  8. Tsuji, M.; Komarneni, S.; Malla, P. J. Amere. Ceram.Soc., 1991, 74(2), 274. https://doi.org/10.1111/j.1151-2916.1991.tb06874.x
  9. Al-Wakeel, E. I.; El-Korashy, S. A. J. Mater. Sci., 1996,31, 1909. https://doi.org/10.1007/BF00372207
  10. Macias, A.; Kindness, A.; Glasser, F. P. Cem. Concr.Res., 1997, 27(2), 215. https://doi.org/10.1016/S0008-8846(97)00004-5
  11. Tsuji, M.; Komarneni, S. J. Mater. Res. 1989, 4(3).
  12. Komarneni, S.; Roy, R.; Roy, D. M.; Fyfe, C. A.;Kennedy, G. J.; Bothner, A. A.; Dadok, J.; Chesnick,A. S. J. Mater. Sci. 1985, 20, 4209. https://doi.org/10.1007/BF00552416
  13. Al-Wakeel; E. I., El-Korashy, S. A.; El-Hemaly, S. A.;Rizk, M. A, J. Mater. Sci. 2001, 36, 2405. https://doi.org/10.1023/A:1017969729433
  14. Komarneni, S.; Roy, D.M., Scientific Basis for NuclearWaste Management, Brookins D. G. (ed.) Elsevier,New York, 1983, 5, 55.
  15. Komarneni, S.; Tsuji, M. J. Amer. Ceram. Soc., 1989,72(9), 1668. https://doi.org/10.1111/j.1151-2916.1989.tb06301.x
  16. Wieslawa, N. W., Cem. Concr. Res. 1999, 29, 1759. https://doi.org/10.1016/S0008-8846(99)00166-0
  17. El-Korashy, S. A. J. Mater. Sci, 2003, 38, 1709. https://doi.org/10.1023/A:1023223625842
  18. Komarneni, S., Nucl. Chem. Waste Manage, 1985, 5(4), 247. https://doi.org/10.1016/0191-815X(85)90001-4
  19. Komarneni, S; Roy, D. M.; Roy, R. Cem. Concr. Res.,1986, 16, 47. https://doi.org/10.1016/0008-8846(86)90067-0
  20. El-Korashy, S. A. J. Korean Chem. Soc., 2002, 46(6),515. https://doi.org/10.5012/jkcs.2002.46.6.515
  21. Labhestwar, N.; Shrivastava, O. P. Ind. J. Chem. Soc.1989, 27A(11), 999.
  22. Suzuki, T.; Hatsuchika, T.; Miyake, M. J. Chem. Soc.Faraday, Trans, 1984, 180, 3157.
  23. El-Korashy, S. A. Monatshefte für Chemie, 2002, 133(3), 333. https://doi.org/10.1007/s007060200012
  24. Siau Ciunas, R.; Palubinskaite, D; Kondratiene, D, Mater.Sci. (Medziagotyra), 2001, 7(3), 177.
  25. Tsuji, M.; Komarneni, S. J. Amer. Ceram. Soc., 1989,72, 1668. https://doi.org/10.1111/j.1151-2916.1989.tb06301.x
  26. Labhestwar, N.; Shrivastava, O.P., React Solids, 1989,7(3), 225. https://doi.org/10.1016/0168-7336(89)80039-7
  27. Lee, J. D. “Concise Inorganic Chemistry, 1991, 4th edn.Chapman & Hall, London, P. 48.
  28. El-Korashy, S. A., Monatshefte für Chemie, 1997, 128,599. https://doi.org/10.1007/BF00807590
  29. Pkada, Y; Isu, N.; Masuda, T.; Ishida, H. J. Ceram. Soc.Japan, 1994, 102(12), 1148. https://doi.org/10.2109/jcersj.102.1148
  30. Sandor, B.; Laszlo, J. C. Cem. Concr. Res., 1999, 29,479. https://doi.org/10.1016/S0008-8846(98)00190-2
  31. Megaw, H. D.; Kelsey, C. H, Nature (London), 1956,177, 390. https://doi.org/10.1038/177390a0
  32. El-Korashy, S. A.; Al-Wakeel, E. I., El-Hemaly, S. A.;Rizk, M. A. Egypt. J. Chem., 2002, 45(4), 723.
  33. Lena, Q. M. A.; Gad, N. R., Water, Air and Soil Pollution, 1999, 110, 1. https://doi.org/10.1023/A:1005025708044

Cited by

  1. The effect of gyrolite structure properties on Zn2+ion adsorption vol.57, pp.4, 2016, https://doi.org/10.1080/19443994.2014.978387