Screening of Lactic Acid Bacteria with Potent Adhesive Property in Human Colon using Colonic Mucin-binding Assay

Colonic mucin-binding assay를 이용한 장내 우수 점착능 유산균주의 선별

  • Kim, Seong-Yeong (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Shin, Kwang-Soon (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Lee, Ho (Department of Food Science and Biotechnology, Kyonggi University)
  • 김성영 (경기대학교 식품생물공학과) ;
  • 신광순 (경기대학교 식품생물공학과) ;
  • 이호 (경기대학교 식품생물공학과)
  • Published : 2004.12.31

Abstract

To screen probiotic lactic acid bacteria with potent adhesive property on human colonic mucosa, colonic mucin-binding assay was introduced. This colonic mucin-binding assay actually measures the binding activity of surface lectin-like protein (SLP) on colonic mucin, and the optimal conditions were examined. The optimal pH for colonic mucin coating on plate wells was 4.8, and ${\times}24,000$ diluted solution of commercially available horseradish peroxidase (HRP) conjugated streptoavidin yielded good results, for rapid screening, $5.0\;{\mu}g/mL$ of biotinylated SLP from lactic acid bacteria was optimal, and optimal scintillation time of 3,3',5,5'-tetramethyl benzidine (TMB) was 10 min. These conditions were useful for both rapid selection and quantitative analysis of lactic acid bacteria that have high adhesion property to human intestinal tract. Among 50 strains of lactic acid bacteria, including 32 type culture strains and 18 isolated strains from infant feces, Lactobacillus species FSB-1 isolated from kimchi showed the highest binding activity to colonic mucin. From taxonomical viewpoints based on morphological study, physico-biochemical study, partial 16S rDNA seguencing, and phylogenetic analysis, L. species FSB-1 was identified as Lactobacillus brevis.

Keywords

colonic mucin-binding assay;adhesion;surface lectin-like protein (SLP);Lactobacillus brevis

References

  1. Fang H, Elina T, Heikki A, Seppo S. Modulation of humoral immune response through probiotic intake. FEMS Immunol. Med. Microbiol. 29: 47-52 (2000) https://doi.org/10.1111/j.1574-695X.2000.tb01504.x
  2. Gill HS. Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Prac. Res. Clin. Gastroenterol. 17: 755-773 (2003) https://doi.org/10.1016/S1521-6918(03)00074-X
  3. Coconnier MH, Klaenhammer TR, Kerneis S, Bernet MF, Servin AL. Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture. Appl. Environ. Microbiol. 58: 2034-2039 (1992)
  4. Blum S, Reniero R, Schiffrin EJ, Crittenden R, Mattila-Sandholm T, Ouwehand AC, Salminen S, von Wright A, Saarela M, Saxelin M, Collins K, Morelli L. Adhesion studies for probiotics: need for validation and refinement. Trends Food Sci. Tech. 10: 405- 410 (1999) https://doi.org/10.1016/S0924-2244(00)00028-5
  5. Matsumura A, Saito T, Arakuni M, Kitazawa H, Kawau Y, Itoh T. New binding assay and preparative trial of cell-surface lectin from Lactobacillus acidophilus group lactic acid bacteria. J. Dairy Sci. 82: 2525-2529 (1999) https://doi.org/10.3168/jds.S0022-0302(99)75505-0
  6. Cowan NR, Steel KJ. Manual of the Identification of Medical Bacteria. pp. 147, 161. 2nd ed. Wiliams & Wilkins, Baltimore, MD, USA (1984)
  7. Ohara S, Watanabe T, Hotta K. Comparative study of carbohydrate portion of gastrointestinal mucins using enzyme-linked lectin- binding assay (ELLA). Comp. Biochem. Physiol. 116: 167- 172 (1997) https://doi.org/10.1016/S0300-9629(96)00205-8
  8. Ouwehand AC, Kirjavainen PV, Shortt C, Salminen S. Probiotics: mechanisms and established effects. Int. Dairy J. 9: 43-52 (1999) https://doi.org/10.1016/S0958-6946(99)00043-6
  9. Macfaddin JF. Biochemical Tests for Identification of Medical bacteria. pp. 36. 2nd ed. Wiliams & Wilkins, Baltimore, MD, USA (1984)
  10. Tuomola EM, Salminen SJ. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int. J. Food Microbiol. 41: 45-51 (1998) https://doi.org/10.1016/S0168-1605(98)00033-6
  11. Kirjavainen PV, Ouwehand AC, Isolauri E, Salminen SJ. The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol. Lett. 167: 185-189 (1998) https://doi.org/10.1111/j.1574-6968.1998.tb13226.x
  12. Mellisa LC, Connie IE, Wang TN, Fumio Y, Daryl WO. Selective enumeration of Bifidobacterium bifidum, Enterococcus faecium, and Streptomycin-resistant Lactobacillus acidophilus from a mixed probiotic product. J. Food Prot. 56: 954-957 (1993) https://doi.org/10.4315/0362-028X-56.11.954
  13. Sherwood L, Gorbach MD. Probiotics and gastrointestinal health.Am. J. Gastroenterol. 95: s2-s4 (2000) https://doi.org/10.1111/j.1572-0241.2000.01695.x
  14. Ouwehand AC, Tuomola EM, Tolkko S, Salminen S. Assessment of adhesion properties of novel probiotic strains to human intestinal mucus. Int. J. Food Microbiol. 64: 119-126 (2001) https://doi.org/10.1016/S0168-1605(00)00440-2
  15. Matsumoto M, Tani H, Ono H, Ohishi H, Benno Y. Adhesive property of Bifidobacterium lactis LKM512 and predominant bacteria of intestinal microflora to human intestinal mucin. Curr. Microbiol. 44: 212-215 (2002) https://doi.org/10.1007/s00284-001-0087-4
  16. Kenji Y, Takuya M, Hiromu T, Tomokazu N, Kyoko S, Tetsuki T, Hidehiko K. Binding specificity of Lactobacillus to glycolipids. Biochem. Biophysic. Res. Commun. 228: 148-152 (1996) https://doi.org/10.1006/bbrc.1996.1630
  17. Goldin BR. Health benefits of probiotics. Br. J. Nutr. 80: s203- s207 (1998)
  18. Salminen S, Ouwehand A, Benno Y, Lee YK. Probiotics: how should they be defined? Trends Food Sci. Technol. 10: 107-110 (1999) https://doi.org/10.1021/es60113a900
  19. Perret V, Lev R, Pigman W. Simple method for the preparation of single cell suspensions from normal and tumorous rat colonic mucosa. Gut 18: 382-385 (1977) https://doi.org/10.1136/gut.18.5.382
  20. Ouwehand AC, Niemi P, Salminen S. The normal faecal microflora does not affect the adhesion of probiotic bacteria in vitro. FEMS Microbiol. Lett. 177: 35-38 (1999) https://doi.org/10.1111/j.1574-6968.1999.tb13710.x
  21. Shen P, Fan XR, Li GW. The SEM study. pp. 52-63. In: Laboratory Experiments in Microbiology. 3rd ed. High Education Press, Beijing, China (1999)
  22. Yoon JH, Lee ST, Park YH. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48: 187-194 (1998) https://doi.org/10.1099/00207713-48-1-187
  23. Fernandes CF, Shahani KM. Anticarcinogenic and immunological properties of dietary Lactobacilli. J. Food Prot. 53: 704-710 (1990) https://doi.org/10.4315/0362-028X-53.8.704
  24. Meydani SN, Ha WK. Immunologic effects of yogurt. Am. J. Clin. Nutr. 71: 821-872 (2000)
  25. He F, Ouwehand AC, Isolauri E, Hashimoto H, Benno Y, Salminen S. Comparison of mucosal adhesion and species identification of bifidobacteria isolated from healthy and allergic infants. FEMS Immunol. Med. Microbiol. 30: 43-47 (2001) https://doi.org/10.1111/j.1574-695X.2001.tb01548.x
  26. Ouwehand AC, Isolauri E, Kirjavainen PV, Tolkko S, Salminen SJ. The mucus binding of Bifidobacterium lactis Bb 12 is enhanced in the presence of Lactobacillus GG and Lactobacillus delbrueckii subsp. bulgaricus. Lett. Appl. Microbiol. 30: 10-13 (2000) https://doi.org/10.1046/j.1472-765x.2000.00590.x
  27. Takahashi N, Saito T, Ohwada S, Ota H, Hashiba H, Itoh T. A new screening method for the selection of Lactobacillus acidophilus group lactic acid bacteria with high adhesion to human colonic mucosa. Biosci. Biotech. Biochem. 60: 1434-1438 (1996) https://doi.org/10.1271/bbb.60.1434
  28. Thomson JD, Higgins DG, Gibson TJ, Clustal W. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting position specific gap penalties and weight matrix choice. Nucl. Acid Res. 22: 4673-4680 (1994) https://doi.org/10.1093/nar/22.22.4673
  29. Chauviere G, Coconnier MH, Kerneis S, Fourniat J, Servin AL. Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells. J. Gen. Microbiol. 138: 1689-1696 (1992) https://doi.org/10.1099/00221287-138-8-1689
  30. Kandler O, Weiss N. Regular, nonsporing Gram-positive rods. Vol. 2, pp. 1208-1234. In: Sneath PHA, Maie NS, Sharpe ME, Holt JC. (ed). Bergey's Manual of Systematic Bacteriology, Wiliams & Wilkins, Baltimore, MD, USA (1986)
  31. Ouwehand AC, Isolauri E, Kirjavainen PV, Salminen SJ. Adhesion of four Bifidobacterium strains to human intestinal mucus from subjects in different age groups. FEMS Microbiol. Lett. 172: 61-64 (1999) https://doi.org/10.1111/j.1574-6968.1999.tb13450.x
  32. Greene JD, Klaenhammer TR. Factors involved in adherence of Lactobacilli to human Caco-2 cells. Appl. Environ. Microbiol. 4487-4494 (1994)
  33. Slomiany BL, Murty VLN, Slomiany A. Isolation and characterization of oligosaccharides from rat colonic mucus glycoprotein. J. Biol. Chem. 255: 9719-9723 (1980)
  34. Falsen E, Pascual C, Sjoden B, Ohlen M, Collins MD. Phenotypic and phylogenetic characterization of a novel Lactobacillus species from human sources: description of Lactobacillus iners sp. nov. Int. J. Syst. Bacteriol. 49: 217-221 (1999) https://doi.org/10.1099/00207713-49-1-217
  35. Goodfellow M, Manfio GP, Chun J. Towards a practical species concept for cultivable bacteria. pp. 25-29. In: The Units of Biodiversity- Species in Practice. Claridge MF, Dawah HA, Wilson MR (ed). Chapman and Hall, London, UK (1997)
  36. Shi L, Ardehali R, Caldwell KD, Valint P. Mucin coating on polymeric material surface to suppress bacterial adhesion. Coll. Surf. B: Biointerfaces 17: 229-239 (2000) https://doi.org/10.1016/S0927-7765(99)00121-6