Glucose Deprivation and Immunostimulation Induced Death in Rat Primary Astrocytes is Mediated by Their Synergistic Effect on the Decrease in Cellular ATP Level

  • Choi, Ji-Woong (Deportment of Pharmacology, College of Pharmacy, Seoul National University) ;
  • Yoo, Byoung-Kwon (Deportment of Pharmacology, College of Pharmacy, Seoul National University) ;
  • Yoon, Seo-Young (Deportment of Pharmacology, College of Pharmacy, Seoul National University) ;
  • Jeon, Mi-Jin (Deportment of Pharmacology, College of Pharmacy, Seoul National University) ;
  • Ko, Kwang-Ho (Deportment of Pharmacology, College of Pharmacy, Seoul National University)
  • Published : 2004.03.01


In this study we investigated whether ATP loss was involved in the potentiated death of immunostimulated rat primary astrocytes in glucose-deprived condition. Rat primary astrocytes immunostimulated with LPS plus IFN-${\gamma}$ for 48 h underwent death upon glucose deprivation, which dependent on the production of peroxynitrite. Intracellular ATP level synergistically decreased by glucose deprivation in immunostimulated astrocytes but not in control cells, and the loss of ATP occurred well ahead of the LDH release. The synergistic cell death and ATP loss by immunostimulation and glucose deprivation were inhibited by iNOS inhibitor (L-NAME and L-NNA) or peroxynitrite decomposition catalyst (also a superoxide anion scavenger), Mn(III)tetrakis(N-methyl-4'-pyridyl)porphyrin (MnTMPyP). Exogenous addition of peroxynitrite generator, SIN-l timedependently induced ATP loss and cell death in the glucose-deprived astrocytes. Depletion of intracellular glutathione (GSH) and dis겨ption of mitochondrial transmembrane potential (MTP) were also observed under same conditions. Supply cellular ATP by the addition of exogenous adenosine or ATP during glucose deprivation inhibited ATP depletion, GSH depletion, MTP disruption and cell death in SIN-l treated or immunostimulated astrocytes. This study showed that perturbation in the regulation of intracellular ATP level in immunostimulated astrocytes might make them more vulnerable to energy challenging stimuli.


  1. Almeida, A., Almeida, J., Bolanos, J. P. and Moncada, S. 2001. Different responses of astrocytes and neurons to nitric oxide: The role of glycolytically generated ATP in astrocyte protection. Proc. Natl. Acad. Sci. USA 98, 15294-15299
  2. Almeida, A. and Bolanos, J. P. 2001. A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons. J. Neurochem. 77, 676-90
  3. Anderson, U., Leighton, B., Young M. E., Blomstrand, E. and Newsholme, E. A. (1998). Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and /or nitric oxide. Biochem. Biophys. Res. Commun. 249, 512-516
  4. Bal-Price, A. and Brown, G. C. 2001. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J. Neurosci. 21, 6480-6491
  5. Barker, J. E., Bolanos, J. P., Land, J. M., Clark, J. B. and Heales, S. J. 1996. Glutathione protects astrocytes from peroxynitritemediated mitochondrial damage: implications for neuronal/astrocytic trafficking and neurodegeneration. Dev. Neurosci. 18,391-396
  6. Beltran, B., Mathur, A., Duchen, M. R., Erusalimsky, J. D. and Moncada, S. 2000. The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death. Proc. Natl. Acad. Sci. USA 97,14602-14607
  7. Bo, L., Dawspm, T. M., Wesselingh, S., Mork, S., Choi, S., Kong, P. A., Hanley, D. and Trapp, B. D. 1994. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis. Ann. Neurol. 36, 778-786
  8. Bolanos, J. P., Peuchen, S., Heales, S. J., Land, J. M. and Clark, J. B. 1994. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J. Neurochem. 63,910-916
  9. Brookes, P. S., Bolanos, J. P. and Heales, S. J. 1999. The assumption that nitric oxide inhibits mitochondrial ATP synthesis is correct. FEBS Lett. 446,261-263
  10. Brorson, J. R., Schumacker, P. T. and Zhang, H. 1999. Nitric oxide acutely inhibits neuronal energy production. J. Neurosci. 19, 147-158
  11. Brown, G. C. and Borutaite, V. 2002. Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic. BioI. Med. 33, 1440-1450
  12. Choi, I. Y., Lee, S. J., Nam, W., Park, J. S., Ko, K. H., Kim, H. C., Shin, C. Y., Chung, J. H., Noh, S. K., Choi, C. R., Shin, D. H. and Kim, W. K. 2001. Augmented death in immunostimulated astrocytes deprived of glucose: inhibition by an iron porphyrin FeTMPyP. J. Neuroimmunol. 112, 55-62
  13. Estevez, A. G., Spear, N., Manuel, S. M., Radi, R., Henderson, C. E., Barbeito, L. and Beckman, J. S. 1998. Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J. Neurosci. 18,923-931
  14. Galeffi, F., Sinnar, S. and Schwartz-Bloom, R. D. 2000. Diazepam promotes ATP recovery and prevents cytochrome c release in hippocampal slices after in vitro ischemia. J. Neurochem. 75, 1242-1249
  15. Green, S. J., Meltzer, M. S., Hibbs, J. B. Jr. and Nacy, C. A. 1990. Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism. J. Immunol. 144,278-283
  16. Haun, S. E., Segeleon, J. E., Trapp, V. L., Clotz, M. A. and Horrocks, L. A. 1996. Inosine mediates the protective effect of adenosine in rat astrocytes cultures subjected to combined glucose-oxygen deprivation. J. Neurochem. 67, 2051-2059
  17. Heales, S. J. and Bolanos, J. P. 2002. Impairment of brain mitochondrial function by reactive nitrogen species: the role of glutathione in dictating susceptibility. Neurochem. Int. 40, 469474
  18. Heales, S. J., Bolanos, J. P., Stewart, V. C., Brookes, P. S., Land, J. M. and Clark, J. B. 1999. Nitric oxide, mitochondria and neurological disease. Biochim. Biophys. Acta. 1410, 215-228
  19. Hu, J. R., Ferreira, A. and VanEldik, L. J. 1997. S100 beta induces neuronal cell death through nitric oxide release from astrocytes. J. Neurochem. 69, 2294-2301
  20. Ju, C., Yoon, K. N., Oh, Y. K., Kim, H. C., Shin, C. Y., Ryu, J. R., Ko, K. H. and Kim, W. K. 2000. Synergistic depletion of astrocytic glutathione by glucose deprivation and peroxynitrite: Correlation with mitochondrial dysfunction and subsequent cell death. J. Neurochem. 74, 1989-1998
  21. Jurkowitz, M. S., Litsky, M. L., Browning, M. J. and Hohl, C. M. 1998. Adenosine, inosine, and guanosine protect glial cells during glucose deprivation and mitochondrial inhibition: correlation between protection and ATP preservation. J. Neurochern. 71, 535-548
  22. Kroemer, G., Zamzami, N. and Susin, S. A. 1997. Mitochondrial control of apoptosis. Immunol. Today 18,44-51
  23. Le, W., Rowe, D., Xie, W., Ortiz, I., He, Y. and Appel, S. H. 2001. Micorglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinsons disease. J. Neurosci. 21, 8447-8455
  24. Moss, D. W. and Bates, T. E. 2001. Activation of murine microglial cell lines by lipopolysaccharide and interferon-$\gamma$ causes NO-mediated decreases in mitochondrial and cellular function. Eur. J. Neurosci. 13, 529-538
  25. Nieminen A-L., Saylor A. K., Herman, B. and Lemasters, J. J. 1994. ATP depletion rather than mitochondrial depolarization mediates hepatocyte killing after metabolic inhibition. Am. J. Physiol. Cell Physiol. 36, C67-C74
  26. Petit, P. X., Zamzami, N., Vayssiere, J. L., Mignotte, B., Kroemer, G. and Castedo, M. 1997. Implication of mitochondria in apoptosis. Mol. Cell. Biochem. 174, 185-188
  27. Poderoso, J. J., Carreras, M. C., Schopfer, F., Lisdero, C. L., Riobo, N. A., Giulivi, C., Boveris, A. D., Boveris, A. and Cadenas, E. 1999. The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance. Free Radic. BioI. Med. 26, 925-935
  28. Rischke, Rand Krieglstein, J. 1990. Post ischemic neuronal damage causes astroglial activation and increase in local cerebral glucose utilization of rat hippocampus. J. Cereb. Blood Flow Metab. 11, 106-113
  29. Shin, C. Y., Jang, E. S., Choi, J. W., Ryu, J. R, Kim, W. K., Kim, H. C., Choi, C. R and Ko, K. H. 2002. Adenosine and purine nucleosides protect rat primary astrocytes from peroxynitritepotentiated, glucose deprivation-induced death: preservation of intracellular ATP level. Exp. Neural. 176, 175-182
  30. Shin, C. Y., Choi, J. W., Ryu, J. R, Ryu, J. H., Kim, W. K., Kim, H. C. and Ko, K. H. 2001. Immunostimulation of rat primary astrocytes decreases intracellular ATP level. Brain Res. 902, 198-204
  31. Silver, I. A., Deas, J. and Erecinska, M. 1997. Ion homeostasis in brain cells: differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neuroscience 78, 589-601
  32. Sims, N. Rand Anerson, M. F. 2002. Mitochondrial contributions to tissue damage in stroke. Neurochem. Int. 40, 511-526
  33. Torreilles, F., Salman-Tabcheh, S., Guerin, M-C. and Torreilles, J. 1999. Neurodegenerative disorders: the role of peroxynitrite. Brain Res. Rev. 30, 153-163
  34. Yager, J. Y., Kala, G., Hertz, L. and Juurlink, B. H. 1994. Correlation between content of high-energy phosphates and hypoxicischemic damage in immature and mature astrocytes. Brain Res. Dev. Brain Res. 82, 62-68