Glucose Deprivation and Immunostimulation Induced Death in Rat Primary Astrocytes is Mediated by Their Synergistic Effect on the Decrease in Cellular ATP Level

  • Choi, Ji-Woong (Deportment of Pharmacology, College of Pharmacy, Seoul National University) ;
  • Yoo, Byoung-Kwon (Deportment of Pharmacology, College of Pharmacy, Seoul National University) ;
  • Yoon, Seo-Young (Deportment of Pharmacology, College of Pharmacy, Seoul National University) ;
  • Jeon, Mi-Jin (Deportment of Pharmacology, College of Pharmacy, Seoul National University) ;
  • Ko, Kwang-Ho (Deportment of Pharmacology, College of Pharmacy, Seoul National University)
  • Published : 2004.03.01

Abstract

In this study we investigated whether ATP loss was involved in the potentiated death of immunostimulated rat primary astrocytes in glucose-deprived condition. Rat primary astrocytes immunostimulated with LPS plus IFN-${\gamma}$ for 48 h underwent death upon glucose deprivation, which dependent on the production of peroxynitrite. Intracellular ATP level synergistically decreased by glucose deprivation in immunostimulated astrocytes but not in control cells, and the loss of ATP occurred well ahead of the LDH release. The synergistic cell death and ATP loss by immunostimulation and glucose deprivation were inhibited by iNOS inhibitor (L-NAME and L-NNA) or peroxynitrite decomposition catalyst (also a superoxide anion scavenger), Mn(III)tetrakis(N-methyl-4'-pyridyl)porphyrin (MnTMPyP). Exogenous addition of peroxynitrite generator, SIN-l timedependently induced ATP loss and cell death in the glucose-deprived astrocytes. Depletion of intracellular glutathione (GSH) and dis겨ption of mitochondrial transmembrane potential (MTP) were also observed under same conditions. Supply cellular ATP by the addition of exogenous adenosine or ATP during glucose deprivation inhibited ATP depletion, GSH depletion, MTP disruption and cell death in SIN-l treated or immunostimulated astrocytes. This study showed that perturbation in the regulation of intracellular ATP level in immunostimulated astrocytes might make them more vulnerable to energy challenging stimuli.

References

  1. Almeida, A., Almeida, J., Bolanos, J. P. and Moncada, S. 2001. Different responses of astrocytes and neurons to nitric oxide: The role of glycolytically generated ATP in astrocyte protection. Proc. Natl. Acad. Sci. USA 98, 15294-15299 https://doi.org/10.1073/pnas.261560998
  2. Almeida, A. and Bolanos, J. P. 2001. A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons. J. Neurochem. 77, 676-90 https://doi.org/10.1046/j.1471-4159.2001.00276.x
  3. Anderson, U., Leighton, B., Young M. E., Blomstrand, E. and Newsholme, E. A. (1998). Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and /or nitric oxide. Biochem. Biophys. Res. Commun. 249, 512-516
  4. Bal-Price, A. and Brown, G. C. 2001. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J. Neurosci. 21, 6480-6491
  5. Barker, J. E., Bolanos, J. P., Land, J. M., Clark, J. B. and Heales, S. J. 1996. Glutathione protects astrocytes from peroxynitritemediated mitochondrial damage: implications for neuronal/astrocytic trafficking and neurodegeneration. Dev. Neurosci. 18,391-396 https://doi.org/10.1159/000111432
  6. Beltran, B., Mathur, A., Duchen, M. R., Erusalimsky, J. D. and Moncada, S. 2000. The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death. Proc. Natl. Acad. Sci. USA 97,14602-14607
  7. Bo, L., Dawspm, T. M., Wesselingh, S., Mork, S., Choi, S., Kong, P. A., Hanley, D. and Trapp, B. D. 1994. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis. Ann. Neurol. 36, 778-786
  8. Bolanos, J. P., Peuchen, S., Heales, S. J., Land, J. M. and Clark, J. B. 1994. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J. Neurochem. 63,910-916 https://doi.org/10.1046/j.1471-4159.1994.63030910.x
  9. Brookes, P. S., Bolanos, J. P. and Heales, S. J. 1999. The assumption that nitric oxide inhibits mitochondrial ATP synthesis is correct. FEBS Lett. 446,261-263 https://doi.org/10.1016/S0014-5793(99)00217-3
  10. Brorson, J. R., Schumacker, P. T. and Zhang, H. 1999. Nitric oxide acutely inhibits neuronal energy production. J. Neurosci. 19, 147-158
  11. Brown, G. C. and Borutaite, V. 2002. Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic. BioI. Med. 33, 1440-1450 https://doi.org/10.1016/S0891-5849(02)01112-7
  12. Choi, I. Y., Lee, S. J., Nam, W., Park, J. S., Ko, K. H., Kim, H. C., Shin, C. Y., Chung, J. H., Noh, S. K., Choi, C. R., Shin, D. H. and Kim, W. K. 2001. Augmented death in immunostimulated astrocytes deprived of glucose: inhibition by an iron porphyrin FeTMPyP. J. Neuroimmunol. 112, 55-62 https://doi.org/10.1016/S0165-5728(00)00382-9
  13. Estevez, A. G., Spear, N., Manuel, S. M., Radi, R., Henderson, C. E., Barbeito, L. and Beckman, J. S. 1998. Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J. Neurosci. 18,923-931
  14. Galeffi, F., Sinnar, S. and Schwartz-Bloom, R. D. 2000. Diazepam promotes ATP recovery and prevents cytochrome c release in hippocampal slices after in vitro ischemia. J. Neurochem. 75, 1242-1249 https://doi.org/10.1046/j.1471-4159.2000.0751242.x
  15. Green, S. J., Meltzer, M. S., Hibbs, J. B. Jr. and Nacy, C. A. 1990. Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism. J. Immunol. 144,278-283
  16. Haun, S. E., Segeleon, J. E., Trapp, V. L., Clotz, M. A. and Horrocks, L. A. 1996. Inosine mediates the protective effect of adenosine in rat astrocytes cultures subjected to combined glucose-oxygen deprivation. J. Neurochem. 67, 2051-2059 https://doi.org/10.1046/j.1471-4159.1996.67052051.x
  17. Heales, S. J. and Bolanos, J. P. 2002. Impairment of brain mitochondrial function by reactive nitrogen species: the role of glutathione in dictating susceptibility. Neurochem. Int. 40, 469474 https://doi.org/10.1016/S0197-0186(01)00117-6
  18. Heales, S. J., Bolanos, J. P., Stewart, V. C., Brookes, P. S., Land, J. M. and Clark, J. B. 1999. Nitric oxide, mitochondria and neurological disease. Biochim. Biophys. Acta. 1410, 215-228 https://doi.org/10.1016/S0005-2728(98)00168-6
  19. Hu, J. R., Ferreira, A. and VanEldik, L. J. 1997. S100 beta induces neuronal cell death through nitric oxide release from astrocytes. J. Neurochem. 69, 2294-2301 https://doi.org/10.1046/j.1471-4159.1997.69062294.x
  20. Ju, C., Yoon, K. N., Oh, Y. K., Kim, H. C., Shin, C. Y., Ryu, J. R., Ko, K. H. and Kim, W. K. 2000. Synergistic depletion of astrocytic glutathione by glucose deprivation and peroxynitrite: Correlation with mitochondrial dysfunction and subsequent cell death. J. Neurochem. 74, 1989-1998 https://doi.org/10.1046/j.1471-4159.2000.0741989.x
  21. Jurkowitz, M. S., Litsky, M. L., Browning, M. J. and Hohl, C. M. 1998. Adenosine, inosine, and guanosine protect glial cells during glucose deprivation and mitochondrial inhibition: correlation between protection and ATP preservation. J. Neurochern. 71, 535-548 https://doi.org/10.1046/j.1471-4159.1998.71020535.x
  22. Kroemer, G., Zamzami, N. and Susin, S. A. 1997. Mitochondrial control of apoptosis. Immunol. Today 18,44-51
  23. Le, W., Rowe, D., Xie, W., Ortiz, I., He, Y. and Appel, S. H. 2001. Micorglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinsons disease. J. Neurosci. 21, 8447-8455
  24. Moss, D. W. and Bates, T. E. 2001. Activation of murine microglial cell lines by lipopolysaccharide and interferon-$\gamma$ causes NO-mediated decreases in mitochondrial and cellular function. Eur. J. Neurosci. 13, 529-538 https://doi.org/10.1046/j.1460-9568.2001.01418.x
  25. Nieminen A-L., Saylor A. K., Herman, B. and Lemasters, J. J. 1994. ATP depletion rather than mitochondrial depolarization mediates hepatocyte killing after metabolic inhibition. Am. J. Physiol. Cell Physiol. 36, C67-C74
  26. Petit, P. X., Zamzami, N., Vayssiere, J. L., Mignotte, B., Kroemer, G. and Castedo, M. 1997. Implication of mitochondria in apoptosis. Mol. Cell. Biochem. 174, 185-188 https://doi.org/10.1023/A:1006848205880
  27. Poderoso, J. J., Carreras, M. C., Schopfer, F., Lisdero, C. L., Riobo, N. A., Giulivi, C., Boveris, A. D., Boveris, A. and Cadenas, E. 1999. The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance. Free Radic. BioI. Med. 26, 925-935 https://doi.org/10.1016/S0891-5849(98)00277-9
  28. Rischke, Rand Krieglstein, J. 1990. Post ischemic neuronal damage causes astroglial activation and increase in local cerebral glucose utilization of rat hippocampus. J. Cereb. Blood Flow Metab. 11, 106-113
  29. Shin, C. Y., Jang, E. S., Choi, J. W., Ryu, J. R, Kim, W. K., Kim, H. C., Choi, C. R and Ko, K. H. 2002. Adenosine and purine nucleosides protect rat primary astrocytes from peroxynitritepotentiated, glucose deprivation-induced death: preservation of intracellular ATP level. Exp. Neural. 176, 175-182 https://doi.org/10.1006/exnr.2002.7913
  30. Shin, C. Y., Choi, J. W., Ryu, J. R, Ryu, J. H., Kim, W. K., Kim, H. C. and Ko, K. H. 2001. Immunostimulation of rat primary astrocytes decreases intracellular ATP level. Brain Res. 902, 198-204 https://doi.org/10.1016/S0006-8993(01)02385-X
  31. Silver, I. A., Deas, J. and Erecinska, M. 1997. Ion homeostasis in brain cells: differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neuroscience 78, 589-601 https://doi.org/10.1016/S0306-4522(96)00600-8
  32. Sims, N. Rand Anerson, M. F. 2002. Mitochondrial contributions to tissue damage in stroke. Neurochem. Int. 40, 511-526 https://doi.org/10.1016/S0197-0186(01)00122-X
  33. Torreilles, F., Salman-Tabcheh, S., Guerin, M-C. and Torreilles, J. 1999. Neurodegenerative disorders: the role of peroxynitrite. Brain Res. Rev. 30, 153-163 https://doi.org/10.1016/S0165-0173(99)00014-4
  34. Yager, J. Y., Kala, G., Hertz, L. and Juurlink, B. H. 1994. Correlation between content of high-energy phosphates and hypoxicischemic damage in immature and mature astrocytes. Brain Res. Dev. Brain Res. 82, 62-68 https://doi.org/10.1016/0165-3806(94)90148-1