DOI QR코드

DOI QR Code

Robust Optimal Design of a Decoupled Vibratory Microgyroscope Considering Fabrication Influence

공정영향을 고려한 비연성 진동형 마이크로 자이로스코프의 강건 최적 설계

  • 정희문 (삼성종합기술원 전문연구원) ;
  • 하성규 (한양대학교 기계정보경영공학부)
  • Published : 2004.08.01

Abstract

A robust optimal design considering fabrication influence has been performed for the decoupled vibratory microgyroscope fabricated by the bulk micromachining. For the analysis of the gyroscope, a design tool has been developed, by which user can perform the system level design considering electric signal process and the fabrication influence as well as mechanical characteristics. An initial design of the gyroscope is performed satisfying the performances of scale factor (or sensitivity) and phase delay, which depend on the frequency difference between driving and sensing resonant frequencies. The objective functions are formulated in order to reduce the variances of the frequency difference and the frequency in itself by fabrication error. To certify the results, the standard deviations are calculated through the Monte Caries Simulation (MCS) and compared initial deviation that is measured fabricated gyroscope chip.

Keywords

MEMS Fabrication Influence;Microgyroscope;Robust Design

References

  1. Yazdi, N., Ayazi, F. and Najafi, K., 1998, 'Micromachined Inertial Sensors,' Proceedings of the IEEE, Vol. 86, No. 8, pp. 1640-1659 https://doi.org/10.1109/5.704269
  2. Greiff, P., Boxenhorn, B., King, T. and Howe, R. T., 1991, 'Silicon Monolithic Micromechanical Gyroscope,' Tech. Dig. 6t Int. Conf. Solid-State Sensors and Actuators (Transducers'91), San Francisco, CA, pp. 966-968 https://doi.org/10.1109/SENSOR.1991.149051
  3. Burdess, J. S., Harris, A. J., Cruickshank, J., Wood, D. and Cooper, G., 1994, 'A Review of Vibrtory Gyroscopes,' Engineering Science and Education Journal, pp. 249-254 https://doi.org/10.1049/esej:19940603
  4. Oh, Y. S., Lee, B. L., Baek, S. S., Kim, H. S., Kim, J. G., Kang, S. J. and Song, C. M., 'A tunable vibratory microgyroscope,' Sensors and Actuators, Vol. A64, pp. 51-56, 1998 https://doi.org/10.1016/S0924-4247(98)80057-5
  5. Kobayashi, S., Hara, T., Oguchi, T., Asaji, Y., Yaji, K. and Ohwada, K., 1999, 'Double-Frame Silicon Gyroscope Packaged Under Low Pressure by Wafer Bonding,' The $10^{th}$ Int. Conf. On Solid-Stage Sensors and Actuators (Transducer 99), Sendai, Japan, 3D1.3
  6. Adams, S., Grovess, J., Shaw, K., Davis, T., Cararelli, D., Carroll, R., Walsh, J. and Fontanella, M., 1999, 'A Single-Crystal Silicon Gyroscope with Decoupled Drive and Sense,' Part of the SPIE Conf. On Micromachined Devices and Components V, Santa Clara, California, Vol. 3876, pp. 74-83 https://doi.org/10.1117/12.360511
  7. Geiger, W., Butt, W. U., $Gai{\beta}er,$ A., Frech, J., Braxmaier, M., Link, T., Kohne, A., Nommensen, P., Sandmaier, H. and Lang, W, 2001, 'Decoupled Microgyros and The Design Principle DAVED,' The 14th IEEE International Conference (MEMS 2001), pp. 170-173 https://doi.org/10.1109/MEMSYS.2001.906507
  8. Mochida, Y., Tamura, M. and Ohwada, K., 1999, 'A Micromachined Vibrating Rate Gyroscope with Independent Beams for The Drive and Detection Modes,' Twelfth IEEE International Conference (MEMS '99), pp. 618-623 https://doi.org/10.1109/MEMSYS.1999.746899
  9. Park, K. Y., Jeong, H. S., An, S. Shin, S. H. and Lee, C. W., 1999, 'Lateral Gyroscope Suspended by Two Gimbals Through High Aspect Ratio ICP Etching,' The $10^{th}$ Int. Conf. On Solid-Stage Sensors and Actuators (Transducer 99), Sendai, Japan, 3D2.1
  10. Baek, S. S., Oh, Y. S., Ha, B. J., An, S. D., An, B. H., Song, H. and Song, C. M., 1999, 'A Symmetrical zaxis Gyroscope with A High Aspect Ratio using Simple and New Process,' Twelfth IEEE International Conference (MEMS '99), pp. 612-617 https://doi.org/10.1109/MEMSYS.1999.746898
  11. Esashi, M. and Minami, K., 1994, 'Packaged Micromechanical Sensors,' Emerging Technologies and Factory Automation, IEEE Symposium (ETFA '94), pp.30-37 https://doi.org/10.1109/ETFA.1994.402027
  12. Funk, K., Emmerich, H., Schilp, A., Offenberg, M., Neul, R. and Larmer, F., 1999, 'A Surface Micromachined Silicon Gyroscope using A Thick Polysilicon Layer,' Twelfth IEEE International Conference (MEMS '99), pp. 57-60 https://doi.org/10.1109/MEMSYS.1999.746752
  13. Tanaka, K., Mochida, Y., Sugimoto, S., Moriya, K., Hasegawa, T., Atsuchi, K. and Ohwada, K., 1995, 'A Micromachined Vibrating Gyroscope,' Proceedings of IEEE (MEMS '95), pp. 278-281
  14. Geen, J.A., Sherman, S.J., Chang, J.F. and Lewis, S.R., 2002, 'Single-chip Surface Micromachined Integrated Gyroscope with 50/spl deg//h Allan Deviation,' IEEE Journal of Solid-State Circuits, Vol. 37, Issue 12, pp. 1860-1866 https://doi.org/10.1109/JSSC.2002.804345
  15. Hwang, K. H., Lee, K. H., Park, G. J., Lee, B. L., Cho, Y. C. and Lee, S. H., 2002, 'Robust Design of The Vibratory Gyroscope with Unbalanced Inner Torsion Gimbal Using Axiomatic Design,' Journal of KSME, Vol. 26, No.5, pp. 914-923 https://doi.org/10.3795/KSME-A.2002.26.5.914
  16. Han, J. S. and Kwak, B. M., 2001, 'Robust Optimal Design of A Vibratory Microgyroscope Considering Fabrication Errors,' Journal of Micromechanics and Microengineering, Vol. 11, pp. 662-671 https://doi.org/10.1088/0960-1317/11/6/307
  17. DOT, Vanderplaats Research and Development Inc.