Involvement of calcineurin and PKB/Akt in development of hereditary hypertension

유전적 고혈압 발병에 대한 Calcineurin 및 PKB/Akt의 연관성

  • Hong, Yonggeun (Department of Internal Medicine-Cardiology, University of Texas Southwestern Medical Center at Dallas) ;
  • Cho, Jae-hyun (Department of Psychiatry, University of Alabama at Birmingham) ;
  • Kim, Joo-heon (College of Veterinary Medicine and Institute of Animal Medicine, Gyeongsang National University)
  • 홍용근 (텍사스 사우스 웨스턴 메디칼센터 심장내과) ;
  • 조재현 (버밍헴 알라바마대학 정신의학과) ;
  • 김주헌 (경상대학교 수의과대학 및 동물의학연구소)
  • Accepted : 2004.02.27
  • Published : 2004.03.31


Severe hypertension (>180 mmHg) develops in spontaneously hypertensive rats (SHR) after 12 wk-old; however, it is not clear whether what kinds of molecular mechanism leads to altered cardiac performance following developmental stages in SHR. Also, although the effect of calcineurin (Cn) to promote cardiomyocyte hypertrophy in vivo and in vitro is established, its overall necessity as a hypertrophic mediator is currently an area of ongoing debate. Thus, we have examined i) body weight and blood pressure, ii) differences of expression and distribution of signaling molecules such as Cn, protein kinase B/Akt (PKB/Akt), and extracellular signal-regulated kinase (ERK) between SHR and their age-matched control Wistar-Kyoto (WKY) rats following developmental stages. In 16 wk-old SHR compared with WKY, 2-dimentional echocardiography showed cardiac enlargement and hypertrophy of left ventricle, significantly. Taken together, we suggest that Cn is associated with hereditary cardiac hypertrophy, the process being related to the molecular signaling mechanisms involving PKB/Akt and ERK.


  1. Akhter, S. A., Milano, C. A., Shotwell, K. F., Cho, M. C., Rockman, H. A., Lefkowitz, R. J. and Koch, W. J. Transgenic mice with cardiac overexpression ofalpha1B-adrenergic receptors. In vivo alpha1-adrenergic receptor-mediated regulation of beta-adrenergic signaling. J. Biol. Chem. 1997, 272, 21253-21259
  2. Bing, O. H., Brooks, W. W., Robinson, K. G.,Slawsky, M. T., Hayes, J. A., Litwin, S. E., Sen, S. and Conrad, C. H. The spontaneously hypertensive ratas a model of the transition from compensated left ventricular hypertrophy to failure. J. Mol. Cell Cardiol. 1995, 27, 383-396.
  3. Boluyt, M. O., Bing, O. H. L. and Lakatta, E. G. The ageing spontaneously hypertensive rat as a model of the transition from stable compensated hypertrophy to heart failure. Eur. Heart J. 1995, 16(suppl N), 19-30
  4. Brilla, C. G., Janicki, J. S. and Weber, K. T. Impaired diastolic function and coronary reserve in genetic hypertension: role of interstitial fibrosis and medialthickening of intramyocardial coronary arteries. Circ Res. 1991, 69, 107-115
  5. Clerk, A. and Sugden, P. H. Activation of protein kinase cascades in the heart by hypertrophic G proteincoupled receptor agonists. Am. J. Cardiol. 1999, 17, 64-69
  6. Corda, S., Mebazaa, A., Gandolfini, M. P., Fitting, C., Marotte, F., Peynet, J., Charlemagne, D., Cavaillon, J. M., Payen, D., Rappaport, L. and Samuel, J. L. Trophic effect of human pericardial fluid on adult cardiac myocytes. Differential ole of fibroblast growth factor-2 and factors related to ventricular hypertrophy. Circ. Res. 1997, 81, 679-687
  7. Delaughter, M. C., Taffet, G. E., Fiorotto, M. L., Entman, M. L. and Schwartz, R. J. Local insulinlike growth factor I expression induces physiologic,then pathologic, cardiac hypertrophy in transgenic mice. FASEB J. 1999, 13, 1923-1929
  8. De Windt, L. J., Lim, H. W., Bueno, O. F., Liang,Q., Delling, U., Braz, J. C., Glascock, B. J., Kimball, T. F., del Monte, F., Hajjar, R. J. and Molkentin, J. D. Targeted inhibition of calcineurin attenuates cardiachypertrophy in vivo. Proc. Natl. Acad. Sci. USA. 2001, 98, 3322-3327
  9. Li, S., Galbiati, F., Volonte, D., Sargiacomo, M., Engelman, J. A., Das, K., Scherer, P. E. and Lisanti, M. P. Mutational analysis of caveolin-induced vesicleformation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes. FEBS Lett. 1998, 434, 127-134
  10. Hill, J. A., Karimi, M., Kutschke, W., Davisson, R. L., Zimmerman, K., Wang, Z., erber, R. E. and Weiss, R. M. Cardiac hypertrophy is not a requiredcompensatory response to short-term pressure overload. Circulation. 2000, 101, 2863-2869
  11. Hong, Y. Role of caveolin as inter/intracellular shuttle molecule on the pathogenesis of diabetes and hypertension: Characterization of the multifunctional role of caveolin isoforms. Ph.D thesis of GSNU library. 2001
  12. Kenneth, R. and Chien, M. D. Stress pathway and heart failure. Cell. 1999, 98, 555-558
  13. Kobayashi, T., Hamada, M., Okayama, H., Shigematsu, Y., Sumimoto, T. and Hiwada, K. Contractile properties of left ventricular myocytes isolated from spontaneously hypertensive rats: effect of angiotensin II. J. Hypertens. 1995, 13, 1803-1807
  14. MacLellan, W. R. and Schneider, M. D. Genetic dissection of cardiac growth control pathways. Annu. Rev. Physiol. 2000, 62, 289-319
  15. Marian, A. J. and Roberts, R. Recent advances in the molecular genetics of hypertrophic cardiomyopathy. Circulation. 1995, 92, 1336-1347
  16. Molkentin, J. D. and Dorn II G. W. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 2001, 63, 391-426
  17. Nishimura, H., Kubo, S., Nishioka, A., Imamura, K., Kawamura, K. and Hasegawa, M. Left ventricular diastolic function of spontaneously hypertensive rats and its relationship to structural components of the left ventricle. Clin. Sci. (Lond.). 1985, 69, 571-579
  18. Oh, P. and Schnitzer, J. E. Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol. Biol. Cell. 2001, 12, 685-698
  19. Ostrom, R. S., Gregorian, C., Drenan, R. M., Xiang, Y., Regan, J. W. and Insel, P. A. Receptor number and caveolar co-localization determine receptor couplingefficiency to adenylyl cyclase. J. Biol. Chem. 2001, 276, 42063-42069.
  20. Pfeffer, M. A., Frohlich, E. D., Pfeffer, J. M., Yunice, A. and Nordquist, J. A. Pathophysiological implications of the increased cardiac output of young spontaneously hypertensive rats. Circ. Res. 1974, 34/35, I235-I242
  21. Ruwhof, C. and Laarse, A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc. Res. 2000, 47, 23-37
  22. Woessner JF Jr. The determination of hydroxyproline in tissue and protein samples containing small proportions of this amino acid. Arch. Biochem.Biophys. 1961, 93, 440-447