Atmospheric-Pressure Plasma Treatment of Ethylene-Vinyl Acetate (EVA) to Enhance Adhesion Energy between EVA and Polyurethane

상압 플라즈마 표면처리에 따른 Ethylene-Vinyl Acetate (EVA)의 표면개질 및 Polyurethane과의 접착력 증진

  • Kim, Jeong-Soon (Plasma Technology Center, Institute for Advanced Engineering) ;
  • Uhm, Han-S (Plasma Technology Center, Institute for Advanced Engineering) ;
  • Kim, Hyoung-Suk (Plasma Technology Center, Institute for Advanced Engineering)
  • 김정순 (고등기술연구원 플라즈마기술센터) ;
  • 엄환섭 (고등기술연구원 플라즈마기술센터) ;
  • 김형석 (고등기술연구원 플라즈마기술센터)
  • Published : 2004.03.31


Plasma treatment is frequently used to increase surface functionality and surface activity. It enables to improve various surface properties such as catalytic selectivity, printability, and interfacial adhesion between various materials. Surface or the ethylene-vinyl acetate (EVA) is exposed under an atmospheric pressure plasma torch (APPT), generated by dielectric barrier discharge (DBD), and the treated surfaces are systemically investigated. Argon, air, and oxygen are used as a processing gas. Properties of the treated EVA surfaces are investigated by the zeta-potential measurements and surface free energies. It is shown that the plasma treatment leads to a drastic increase of surface functional groups of EVA, as the increase of its adhesion energy ($G_{IC}$). Therefore, it is concluded that the APPT process is an effective means to improve adhesion of EVA and polyurethane (PU).

플라즈마 표면처리는 표면 관능기 표면 활성도 등을 증가시켜 촉매적 선택성, 염색성 및 다양한 소재의 접착력을 증가시켜주는데 큰 역할을 담당한다. 본 연구에서는 dielectric barrier discharge (DBD)를 이용한 상압 플라즈마 토치로 ethylene-vinyl acetate (EVA)의 표면을 처리하였다. 이때 사용된 가스는 아르곤, 공기, 및 산소를 이용하였으며, 표면처리에 따른 EVA의 표면 특성을 제타전위와 표면자유에너지를 이용하여 관찰하였다. 그 결과, 상압 플라즈마 표면처리에 따른 EVA의 표면 관능기는 접착 에너지 ($G_{IC}$)와 비례관계를 가지며 증가하는 것을 확인하였다. 특히, 상압 플라즈마 표면처리 공정은 EVA와 polyurethane (PU) 계면의 접착력을 크게 증가시켜 주는 것을 확인하였다.


  1. R. W. Richards and S. K. Reace, Polymer Surfaces and Interfaces, John Wiley, Chichester, 1999
  2. G. O. Shonaike and G. P. Simon, Polymer Blends and Alloys, Marcel Dekker, New York, 1999
  3. T. J. Pinnavaia and G. W. Beall, Polymer-Clay Nanocomposites, John Wiley, Chichester, 2000
  4. Y. H. Kim and R. P. Wool, 'A Theory of Healing at a Polymer-Polymer Interface', Macromolecules, 16, 1115 (1983)
  5. T. H. Richardson, Functional Organic and Polymeric Materials, John Wiley, Chichester, 2000
  6. W. Jia and X. Chen, 'Effect of Polymer Filler Interactions on PTC behaviors of LDPE/EPDM Blends Filled with Carbon Blacks', J. Appl. Polym. Sci., 66, 7885 (1997)
  7. E. Papirer and D. Y. Wu, 'Study of the Behavior and Conformation of Linear Hydrocarbon Chains Grafted on the Surface of Carbon Black', Carbon, 28, 393 (1990)
  8. S. J. Park, in Interfacial Forces and Fields: Theory and Applications, ed. J. P. Hsu, Marcel Dekker, New York, p.385 (1999)
  9. S. J. Park and J. S. Kim, 'Modifications Produced by Electrochemical Treatments on Carbon Blacks: Microstructures and Mechanical Interfacial Properties', Carbon, 39, 2011 (2001)
  10. J. S. Kim, Y. K. Kim, and K. H. Lee, 'Effects of Atmospheric Plasma Treatment on the Interfacial Characteristics of Ethylene-Vinyl acetate/Polyurethane Composites', J. Colloid Interface Sci., in press
  11. T. Brock, M. Groteklaes, and P. Mischke, European Coatings Handbook, Curt R, Germany, 2000
  12. J. R. Roth, Industrial Plasma Engineering, Volume 1: Principles, London, 2001
  13. J. R. Roth, Industrial Plasma Engineering, Volume 2: Applications to Nonthermal Plasma Processing, Institute of Physics, London, 2001
  14. M. Kohler, Etching in Microsystem Technology, Wiley-VCH, Weinheim, 1999
  15. N. Inagaki, S. Tasaka, and Y. W. Park, 'Effects of the Surface Modification by Remote Hydrogen Plasma on Adhesion in the Electroless Copper/Tetrafluoroethylene-Hexafluoropropylene Copolymer (FEP) System', J. Adhesion Sci. Technol., 12, 1105(1998)
  16. Q. S. Yu, C. M. Reddy, M. F. Meives, and H. K. Yasuca, 'Surface Modification of Poly(tetrafluoroethylene) by a Low-Temperature Cascade Arc Torch and Radio-Frequency Plasmas', J. Polym. Sci. Polym. Chem., 37, 4432 (1999)<4432::AID-POLA20>3.0.CO;2-J
  17. G. Z. Xizo, 'Effects of Solvents on the Surface Properties of Oxygen Plasma-Treated Polyethylene and Polypropylene Films', J. Adhesion Sci. Technol., 11, 655 (1997)
  18. K. Tanaka, T. Inomate, and M. Kogoma, 'Improvement in Adhesive Strength of Fluorinated Polymer Films by Atmospheric Pressure Glow Plasma', Thin Solid Films, 386, 217 (2001)
  19. S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, 'Stable Glow Plasma at Atmospheric Pressure', J. Phys, D: Apply. Phys., 21, 838 (1988)
  20. H. W. Greensmith, 'Rupture of Rubbr. VIII. Comparions of Tear and Tensile Rupture Measurements', J. Appl. Polym. sci., 3, 183 (1960)
  21. A. V. Butler, Electrical Phenomena at Interfaces, Methuen, London, 1951
  22. A. Nakao, Y. Suzuki, and M. Iwaki, 'Water Wettability and Zeta-Potential of Polystyrene Surface Modified by Ne or Na Implantation', J. Colloid Interface Sci., 197, 257 (1997)
  23. M. Dai, 'The Effect of Zeta Potential of Activated Carbon on the Adsorption of Dyes from Aqueous Solution: I. The Adsorption of Cationic Dyes: Methyl Green and Methyl Violet', J. Colloid Interface Sci., 164, 223 (1994)
  24. F. M. Fowkes, in Physico-Chemical Aspects of Polymer Surfaces, Ed. K. L. Mittal, Plenum, New York, 1983
  25. A. W. Adamson, Physical Chemistry of Surfaces, 5 Ed., John Wiley, New York, 1990
  26. C. J. van Oss, interfacial Forces in Aqueous Media, Marcel Dekker, New York, 1994