The Influence of Plasma Surface Modification on Frictional Property of Natural Rubber Vulcanizates

  • Nah, C. (Polymer Science and Technology, Chonbuk National University) ;
  • Kim, D.H. (Polymer Science and Technology, Chemical Engineering, Chonbuk National University) ;
  • Mathew, G. (Polymer Science and Technology, Chemical Engineering, Chonbuk National University) ;
  • Jeon, D.J. (Polymer Science and Technology, Chemical Engineering, Chonbuk National University) ;
  • Jurkowski, B. (Division of Plastic and Rubber Processing, Institute of Material Technology, Poznan, University of Technology) ;
  • Jurkowska, B. (Research and Development Center for the Tire Industry(OBRPO))
  • Published : 2004.03.31

Abstract

The plasma surface modification of natural rubber vulcanizate was carried out using chlorodifluoromethane in a radio-frequency (13.56 MHz) electrodeless bell type plasma reactor. The modification was qualitatively assessed by Fourier transform infrared spectroscopy. The frictional force of the plasma-treated surface was found to decrease with the time of plasma treatment. An increase in the surface polarity, as evidenced by the decrease in contact angle of a sessile drop of water and ethylene glycol on the natural rubber vulcanizate surface, was noted with the plasma modification. In the case of similar plasma treatment of glass surface, only a reduction in the polarity was observed. The use of geometric and harmonic mean methods was found to be useful to evaluate the London dispersive and specific components of surface free energy. Irrespective of the method used for evaluation, an increasing trend in the surface free energy was noted with increasing plasma treatment time. However, the harmonic mean method yielded comparatively higher values of surface free energy than the geometric mean method. The plasma surface modification was found to vary the frictional coefficient by influencing the interfacial, hysteresis and viscous components of friction in opposing dual manners.

라디오 주파수(13.56 MHz) 무전극 종형 플라즈마 반응기를 이용하여 천연고무 가교체의 표면을 클로로디플루오로메탄으로 처리하였다. FT-적외선 분광분석으로 표면개질 정도를 정성적으로 조사하였다. 플라즈마 처리표면의 마찰힘은 플라즈마 처리시간 증가에 따라 감소하였다. 고무표면에 에틸렌글리콜과 물을 떨어뜨려 접촉각을 측정한 결과 플라즈마 처리에 따라 감소하는 것으로 미루어 플라즈마 개질에 따라 표면극성이 증가하는 것을 확인하였다. 유리판 표면을 동일조건으로 플라즈마 처리한 경우는 극성의 감소만이 확인되었다. 표면자유에너지의 London 비극성 및 극성요소를 계산하는데 있어서 기하평균법과 조화평균법이 유용한 것으로 확인되었다. 평균방법에 관계없이 플라즈마 처리시간이 증가함에 따라 표면자유에너지는 증가하였다 그러나 조화평균법으로 계산된 자유에너지가 기하평균법으로 계산된 값에 비해 상대적으로 높았다. 플라즈마 표면개질은 마찰의 계면, 히스테리시스, 점성요소들에 영향을 미침으로써 마찰계수를 변화시키는 것으로 나타났다.

References

  1. A. Schallamach, 'How does rubber slide?', Wear, 17, 301 (1971) https://doi.org/10.1016/0043-1648(71)90033-0
  2. M. Barquins and A.D. Roberts, 'Rubber friction variation with rate and temperature: some new observations', J. Phys. Part D Appl. Phys., 19, 547 (1986) https://doi.org/10.1088/0022-3727/19/4/010
  3. S. Morita and S. Hattori, 'Applications of plasma polymers', ed. R.d'Agostino, Academic Press, 1990
  4. N. Morosoff, 'An introduction to plasma polymerization', ed. R. d'Agostino, Academic Press, 1990
  5. F. F. Shi, 'Recent advances in polymer thin films prepared by plasma polymerization, synthesis, structural characterization, properties and applications', Surf. Coat. Technol., 82, 1 (1996) https://doi.org/10.1016/0257-8972(95)02621-5
  6. E. Kay, J. Coburn and A. Dilks, Top. Curr. Chem., 94, 1 (1980)
  7. M. M. Millard and A. E. Pavlath, J. Macromol. Sci., Chem., A-I0, 576 (1976)
  8. M. M. Millard, 'Characterization of metal and polymer surfaces', Vol. 2, ed. L. M. Lee, Academic Press, New York, 1977
  9. G. Clarotti, A. A. B. Aoumar, F. Schue, J. Sledz, K. E. Geckeler, D. Flosch and A. Orsetti, Makromol. Chem., 192, 2581 (1991)
  10. M. J. O' Keefe and J. M. Rigsbee, 'Influence of substrate material and ion bombardment on plasma deposited fluorocarbon thin films', J. Appl. Polym. sci., 53, 1631 (1994)
  11. A. A. Pavlath and A. G. Pittman, ACS Symp. Ser., 108 (Plasma Polym.), 181 (1979)
  12. P. J. A. Burt, J. A. Cairns, A. K. Cheetham and R. M. Hazel, Plasma Chem. Plasma Process, 6, 417 (1986)
  13. R.d' Agostino, F. Cramarossa, V. Colaprico, and R. d' Ettole, Mechanisms of etching and polymerization in radiofrequency discharges of $CF_4-H_2$, $CF_4-C_2F_4$, $C_2F_6-H_2$, $C_3F_8-H_2$', J. Appl. Phys., 54,1284 (1983)
  14. H. Yasuda and T. Yasuda, 'The competitive ablation and polymerization (CAP) principle and the plasma sensitivity of elements in plasma polymerization and treatment', J. Polym. Sci.; Polym. Chem., 38, 943 (2000) https://doi.org/10.1002/(SICI)1099-0518(20000315)38:6<943::AID-POLA3>3.0.CO;2-3
  15. C. Nah, M. Y. Huh, J. M. Rhee and T. H. Yoon, 'Plasma surface modification of silica and its effect on properties of styrene butadiene rubber compound', Polym. Int., 51, 510 (2002) https://doi.org/10.1002/pi.897
  16. C. Nah, D. H. Kim, D. J. Kim, W. D. Kim and Y. W. Chang, 'Effect of chlorination on frictional property of natural rubber', J. Korean. Ind. Eng. Chem., 13(4), 321 (2002)
  17. A. D. Roberts, 'A guide to estimating the friction of rubber', Rubber Chem. Technol., 65, 673 (1992)
  18. S. J. Park, 'Long range force contributions to dynamics' in 'Interfacial forces and fields, theory and applications', ed. Jyh-Ping Hsu, Chapter 9, p. 385, Marcel Dekker, Inc, NY, 1999
  19. S. Wu, J. Polym. sai., C34, 19 (1971)
  20. D. K. Owens and R.C. Wendt, 'Estimation of the surface free energy of polymers', J. Appl. Polym. Sci., 13, 1741 (1969) https://doi.org/10.1002/app.1969.070130815
  21. F. M. Fowkes, 'Determination of interfacial tensions, contact angles and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces', J. Phys. Chem., 66, 382 (1962) https://doi.org/10.1021/j100808a524
  22. S. Wu, 'Polymer interface and adhesion', p.169, Dekker, New York, 1982
  23. C. C. Ho and M. C. Khew, 'Surface free energy analysis of natural and modified natural rubber latex films by contact angle method', Langmuir, 16, 1407 (2000) https://doi.org/10.1021/la9816104