Numerical Approach Technique of Spherical Indentation for Material Property Evaluation of Hyper-elastic Rubber

초탄성 고무 물성평가를 위한 구형 압입시험의 수치접근법

  • 이형일 (서강대학교 대학원 기계공학과) ;
  • 이진행 (서강대학교 대학원 기계공학과) ;
  • 김동욱 (현대엔지니어링)
  • Published : 2004.03.31

Abstract

In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are first examined via finite element (FE) analyses. An optimal data acquisition spot is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions, which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/compression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress-strain curve.

References

  1. A. Nayebi, R. E. Abdi, O. Bartier, and G. Mauvoism, 'New Procedure to Determine Steel Mechanical Parameters from the Spherical Indentation Technique', Mechanics of Materials, 34, 243 (2002) https://doi.org/10.1016/S0167-6636(02)00113-8
  2. H. Lee and H. H. Lee, 'An Indentation Theory Based on FEA Solutions for Property Evaluation', Transactions of the Korean Society of Mechanical Engineers A, 25, 11, 1685 (2001)
  3. J. A. Knapp, K. M. Follstaedt, S. M. Myers, J. C. Barbour, and T. A. Friedmann, 'Finite Element Modeling of Nano-indentation', Journal of Applied Physics 85, 3, 1460 (1999)
  4. J. A. Knapp, D. M. Follstaedt, S. M. Myers, J. C. Barbour, T. A. Friedmann, J. W. Ager III, 'Finite Element Modeling of Nano-indentation for Evaluating Mechanical Properties of MEMS Materials' Surface and Coatings Technology, 103, 268 (1998)
  5. H. J., Kang Mechanical Behavior and Fatigue Prediction of Automobile Rubber components, Department of Mechanical Engineering, Sogang University, Masters Thesis, Chapter 2, 2000
  6. Korea Institute of Machinery and Materials, 'Development of Deformation Analyses and Design Technology of Mechanical Components of Hyper-elastic Rubber', The Ministry of Science and Technology, 1999
  7. W. D. Kim, 'Application of Finite Element Method to the Design of Rubber components', KSME Magazine, 38, 12, 42 (1998)
  8. R. S. Rivlin, 1956. 'Large Elastic Deformations in Rheology : Theory and Application', Academic Press, New York. Vol. 1
  9. R. W. Ogden, 'Large Deformation Isotropic Elasticity-On the Correlation of Theory and Experiment for Incompressible Rubber-like Solids', Proceedings of Royal Society of London, A, 326, 565 (1972)
  10. O. H. Yeoh, 'Characterization of Elastic Properties of Carbon-black-filled Rubber Vulcanizates', Rubber Chemistry and Technology, 63, 792 (1990)
  11. ABAQUS Theory Manual, Version 6.3, Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, RI., 2002
  12. ABAQUS User's Manual, Version 6.3, Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, RI., 2002
  13. W. D. Kim, D. J. Kim,, C. W. Na, and Y. S. Lee, 'A Study on the Frictional Characteristics of Vulcanized Rubber Plates', Elastomer, 36, 2, 121 (2001)
  14. D. W. Kim, Software and Hardware Development of Micro-indenter for Material Property Evaluation of Hyper-elastic Rubber, Department of Mechanical Engineering, Sogang University, Masters Thesis, 2002