Cure Behaviors and Mechanical Interfacial Properties of Epoxy/Polyurethane Blends Initiated by Latent Thermal Catalyst

열잠재성 개시제에 의한 에폭시/폴리우레탄 블렌드의 경화거동 및 파괴인성

  • Park, Soo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Seok, Su-Ja (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kang, Jun-Gil (Department of Chemistry, Chungbuk National University) ;
  • Kwon, Soo-Han (Department of Chemistry, Chungbuk National University)
  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 석수자 (한국화학연구원 화학소재연구부) ;
  • 강준길 (충북대학교 화학과) ;
  • 권수한 (충북대학교 화학과)
  • Published : 2004.03.31

Abstract

In this work, the diglycidylether of bisphenol A (DGEBA) and modified polyurethane (PU) blends were initiated by N-benzylpyrazinium hexafluoroantimonate (BPH). The cure and fracture toughness of neat DGEBA with the addition of PU were investigated. The cure properties of DGEBA/PU blend system were examined by DSC and near-IR measurements. The fracture touhtness were investigated by measuring the critical stress intensity factor ($K_{IC}$) and the critical strain energy release rate ($G_{IC}$). According to the results, the maximum values of owe activation energy ($E_a$) and conversion (${\alpha}$) were found at 10 phr of PU. Also the $K_{IC}$ showed a similar behavior with the results of conversion. These results were probably due to increase of crosslinking density in the blends resulted from increase of the hydrogen bonding between the hydroxyl groups of DGEBA and isocyanate groups of PU.

References

  1. J. Delmonte, J. T. Hoggatt, and C. A. May, 'Epoxy Resin', Marcel Dekker, New York, 1988
  2. H. Lee and K. Nevile, 'Handbook of Epoxy Resin', McGraw-Hill, New York, 1986
  3. S. J. Park, T. J. Kim, and J. R. Lee, 'Cure behavior of diglycidylether of bisphenol A/timethyolpropane triglycidylether epoxy blends initiated by thermal latent catalyst', J. Polym. Sic., Polym. Phys., 38, 2114 (2000) https://doi.org/10.1002/1099-0488(20000815)38:16<2114::AID-POLB50>3.0.CO;2-8
  4. J. B. Cho, J. W. Hwang, K. Cho, J. H. An, and C. E. Park, 'Effects of morphology on toughning of tetrafunctional epoxy resins with poly(ether imide)', Polymer, 34, 4832 (1993) https://doi.org/10.1016/0032-3861(93)90005-U
  5. R. S. Bauer, 'Epoxy Resin Chemistry', ACS advances in chemistry series 114, American Chemical Society, Washington DC, 1979
  6. R. L. Wheeler, 'The Epoxy Resin Formulators Training Manual', The Society of The Plastics Industry Inc., New York, 1984
  7. J. Y. Qian, R. A. Pearso, V Shaffer, and M. S. EIAasser, 'The role of dispersed phase morphology on toughening of epoxies', Polymer, 38, 21 (1997) https://doi.org/10.1016/S0032-3861(96)00492-2
  8. G. Oertel, 'Polyurethane Handbook', 2nd ed., Hanser, New York, 1994
  9. C. A. May, 'Epoxy Resin', Marcel Dekker Inc., New York, 1998
  10. S. Iniue and T. Aida, 'Ring-Opening Polymerization', Elsevier Sci., New York, 1984
  11. J. March, 'Advanced Organic Chemistry', 4th ed., Wiley, New York, 1992
  12. T. Endo, H. Uno, 'Photoinitiated cationic polymerization by dialky-4-hydroxyphenylsulfonium salts', J. Polym. Sci., Polym. Lett. Ed., 23, 359 (1985) https://doi.org/10.1002/pol.1985.130230703
  13. S. J. Park, M. K. Seo, J. R. Lee, and D. R. Lee, 'Studies on epoxy resins cured by cationic latent thermal catalysts: the effect of the catalysts on thermal, rheological, and mechanical properties', J. Polym. Sci., Polym. Chem., 39, 187 (2001) https://doi.org/10.1002/1099-0518(20010101)39:1<187::AID-POLA210>3.0.CO;2-H
  14. J. Gu, S. C. Narang, and E. M. Pearce, 'Curing of epoxy resins with diphenyliodonium salts as thermal initiators', J. Appl. Polym. sci., 30, 2997 (1985) https://doi.org/10.1002/app.1985.070300722
  15. S. V. Rosato, D. P. Dimattia, and D. V. Rosato, 'Designing with Plastics and Composites', Nostrand Reinhold, New York, 1991
  16. T. Ozawa, 'A new method of ananlyzing thermogravimetric data', Ball. Chem. Soc. Jpn., 38, 1881 (1965) https://doi.org/10.1246/bcsj.38.1881
  17. S. J. Park, J. S. Jin, J. R. Lee, and P. K. Pak, 'Effect of surface free energieson mechanical properties of epoxy/polyurethane blend system', Polymer (Korea), 24, 245 (2000)
  18. R. J. Fessenden and J. S. Fessenden, 'Organic Chemistry', 4nd ed., Brooks, Belmont 1992
  19. M. C. Finzel, J. Delong, and M. C. Hawley, 'Effect of stoichiometry and diffusion on an epoxy/amine reaction mechanism', J. Polym. Sci., Polym. Chem., 33, 673 (1995) https://doi.org/10.1002/pola.1995.080330409
  20. L. Xu and J. R. Schulup, 'Etherification versus amine addition during epoxy resin/amine cure: An in situ study using near-infrared spectroscopy', J. Appl. Polym. Sci., 67, 895 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980131)67:5<895::AID-APP15>3.0.CO;2-N
  21. S. U. Bidstrup and C. W. Macosko, 'Chemorheology relation for epoxy-amine crossIinking', J. Polym. Sci., Polym Phys., 28, 619 (1990)
  22. C. D. Doyle, 'Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis', Anal. Chem., 33, 77 (1961) https://doi.org/10.1021/ac60169a022
  23. S. J. Park and H. C. Kim, 'Thermal stability and toughening of epoxy resin with polysulfone resin', J. Polym. Sci., Polym. Phys., 39, 121 (2001) https://doi.org/10.1002/1099-0488(20010101)39:1<121::AID-POLB110>3.0.CO;2-N
  24. S. X. Lu, P. Cebe, and M. Capel, 'Thermal stability and thermal expansion studies of PEEK and related polyimides', Polymer, 37, 2999 (1996) https://doi.org/10.1016/0032-3861(96)89397-9
  25. M. C. Chen, D. J. Hourston, and W. B. Sun, 'The morphology and fracture behavior of a miscible epoxy resin-polyetherimide blend', Eur. Polym. J., 31, 199 (1995) https://doi.org/10.1016/0014-3057(94)00136-7
  26. P. Gopal, L. R. Dharani, and F. D. Blum, 'Fracture behavior of chopped glass stand reinforced phenolic composites', Polym. Compos., 5, 327 (1997) https://doi.org/10.1002/pc.750050413