Mechanical Properties of Organoclay filled NR/BR Blends

Organoclay로 보강된 NR/BR Blends의 기계적 특성

  • Kim, W. (Department of Chemical Engineering, Pusan National University) ;
  • Kim, S.K. (Department of Chemical Engineering, Pusan National University) ;
  • Kim, S.K. (Department of Chemical Engineering, Pusan National University) ;
  • Chuug, K.H. (Department of Chemical Engineering, Pusan National University) ;
  • Byun, J.Y. (Department of Chemical Engineering, Pusan National University)
  • Published : 2004.03.31


The cure, viscoelastic and mechanical characteristics of organoclay filled NR/BR blends were studied and compared with the properties of carbon black and silica filled NR/BR blends. The nanocomposites with extensive exfoliation state can be fabricated by a solution mixing method. In the composites, the amount of filler content was fixed to 10 phr. Degree of intercalation and exfoliation was characterized by X-ray diffraction (XRD). XRD results indicated exfoliation of the silicate layers into the rubber matrix. While the degree or intercalation and exfoliation is lowered by the conventional mixing method, extensive exfoliation can be obtained by the solution mixing method. It was found that the clay filled NR/BR compound showed better viscoelastic (tan ${\delta}$) and mechanical properties than the carbon black or silica filled NR/BR compounds.

본 연구에서는 organoclay를 혼합한 NR/BR blend의 가황특성, 동적점탄성 및 기계적 물성을 carbon black 및 silica를 함유한 배합고무와 비교 평가하였다. Solution 혼합법을 이용함으로써 광범위한 나노 복합체를 제조할 수 있었으며, 충전제의 함량은 10phr로 고정하였다. XRD 실험으로 clay의 삽입 및 박리정도를 측정하였다. 통상적인 혼합법을 이용할 경우 clay의 박리 또는 삽입정도가 미약한 반면 solution 혼합법을 이용할 경우 광범위한 박리형태의 clay 배합고무를 얻을 수 있음을 확인하였다. Clay 배합고무는 carbon black 및 silica를 함유한 배합고무에 비해 높은 tan ${\delta}$값을 나타내며, solution 혼합법을 이용할 경우 통상적인 혼합법에 의해 제조된 clay 배합고무에 비해 우수한 기계적 물성을 가짐을 확인할 수 있었다.


  1. R. A. Vaia, H. Ishii, and E. P. Giannelis, 'Synthesis and Properties of Two-dimensional Nanostructures by Direct Intercalation of Polymer Melts in Layered Silicates', Chem. Mater., 5, 1694 (1993)
  2. A. Okada, and A. Usuki, 'The Chemistry of PolymerClay Hybrids', Mater. Sci. Eng., 3, 109 (1995)
  3. T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, 'Mechanism of Clay Tactoid Exfoliation in Epoxy Clay Nanocomposites', Chem. Mater., 7, 2144 (1995)
  4. L. Zhang, Y. Wang, Y. Sui, and D. Yu, 'Morphology and Mechanical Properties of Clay/Styrene-Butadiene Rubber Nanocomposites', J. Appl. Polym. Sci., 78, 1873 (2000)<1873::AID-APP40>3.0.CO;2-8
  5. M. Pramanik, S. K. Srivastava, B. K. Samantaray, and A. K. Bhowmick, 'Rubber-Clay Nanocomposite by Solution Blending', J. Appl. Polym. Sci., 87, 2216 (2003)
  6. R. E. Grim, 'Clay Mineralogy', McGraw-Hili, New York, 1968
  7. G. D. Parfitt, 'Dispersion of Powders in Liquids', ed. by G. D. Parfitt, Applied Science Publisher, New York, 1981
  8. Y. Wang, L. Zhang, C. Tang, and D. Yu, 'Preparation and Characterization of Rubber-Clay Nanocomposite', J. Appl. Polym. Sci., 78, 1879 (2000)<1879::AID-APP50>3.0.CO;2-1
  9. R. Magaraphan, W. Thaijaroen, and R. Lim-Ochakun, 'Structure and Properties of Natural Rubber and Modified Montmorillonite Nanocomposites', Rubber Chem. Technol., 76, 406 (2003)
  10. M. Ganter, W. Gronski, P. Reichert, and R. Mulhaupt, 'Rubber Nanocomposites: Morphology and Mechanical Properties of BR and SBR Vulcanizates Reinforced by Organophillic Layered Silicates', Rubber Chem. Technol., 74, 221 (2002)
  11. T. Yen, E. M. James, H. P. Ly, and Martin Engelhardt, 'Clay Nanolayer Reinforcement of Cis1,4-Polyisoprene and Epoxidized Natural Rubber', J. Appl. Polym. Sci., 82, 1391 (2001)
  12. T. D. Fornes, P. J. Yoon, H. Kekkula, and D. R. Paul, 'Nylon 6 Nanocomposites: The Effect of Matrix Molecular Weight', Polymer, 42, 9929 (2001)
  13. A. Mousa, and J. Karger-Kocsis, 'Rheological and Thermodynamical Behavior of Styrene/Butadiene Rubber-Organoclay Nanocomposites', Macromol. Mater. Engng., 286, 260 (2001)
  14. S. K. Mandal, and D. K. Basu, 'Reactive Compounds for Effective Utilization of Silica', Rubber Chem. Technol., 67, 672, (1994)
  15. S. Bandyopadhyay, D. K. Tripathy, P. P. De, and S.K. De, 'Effect of (3-Aminopropyl) Triethoxysilane on Chernorheological Behavior of Carboxylated Nitrile Rubber in Presence of Surface Oxidized ISAF Carbon Black', J. Appl. Polym. Sci., 63, 1833 (1997)<1833::AID-APP16>3.0.CO;2-Z
  16. J. B. Donnet, 'Black and White Fillers and Tire Compound', Rubber Chem. Technol., 71, 323 (1998)
  17. B. B. Boonstra, 'Role of Particulate Fillers in Elastomer Reinforcement: A Review', Polymer, 20, 691 (1979)
  18. S. Wolff, and J. B. Donnet, 'Characterization of Fillers in Vulcanizates According to The Einstein-Guth-Gold Equation', Rubber. Chem. Technol., 63, 32 (1990)
  19. M. J. Wang, P. Zang, and K. Mahamud, 'Carbon Silica Dual Phase Filler, A New Generation Reinforcing Agent for Rubber: Part IX. Application to Truck Tire Tread Compound', Rubber Chem. Technol., 74, 124 (2001)
  20. A. R. Payne, and R. E. Whittaker, 'Low Strain Dynamic Properties of Filled Rubbers', Rubber Chem. Technol., 44, 440 (1971)
  21. M. J. Wang, 'Effect of Polymer-Filler and Filler Filler Interactions on Dynamic Properties of Filled Vulcanizates', Rubber Chem. Technol., 71, 520 (1998)
  22. M. J. Wang, 'The Role of Filler Networking in Dynamic Properties of Filled Rubber', Rubber Chem. Technol., 72, 430 (1999)
  23. S. G. Laube, 'Dynamic Properties', Cobot corporation press., p.1 (1977)
  24. K. H. Nordsiek, Marl, Kautschuk + Gummikunststoffe 38 Jahrgang $Nr^3$/85, pp.178-185, 1985