DOI QR코드

DOI QR Code

FUZZY CLOSURE SYSTEMS AND FUZZY CLOSURE OPERATORS

Kim, Yong-Chan;Ko, Jung-Mi

  • Published : 2004.01.01

Abstract

We introduce fuzzy closure systems and fuzzy closure operators as extensions of closure systems and closure operators. We study relationships between fuzzy closure systems and fuzzy closure spaces. In particular, two families F(S) and F(C) of fuzzy closure systems and fuzzy closure operators on X are complete lattice isomorphic.

Keywords

(fuzzy) closure systems;(fuzzy) closure spaces;(fuzzy) S-map;(fuzzy) closure maps

References

  1. International Jouranl of Approximate Reasoning v.18 MV-algebras embedded in a Cl-algebra M.K.Chakraborty;J.Sen https://doi.org/10.1016/S0888-613X(98)00007-3
  2. Journal of Information Sciences v.106 Extension principles for fuzzy set theory G.Gerla;L.Scarpati https://doi.org/10.1016/S0020-0255(97)10003-2
  3. J. Math. Anal. Appl. v.24 Fuzzy topological spaces C.L.Chang https://doi.org/10.1016/0022-247X(68)90057-7
  4. Mathematical Logic Quarterly v.40 An extension principle for fuzzy logics G.Gerla https://doi.org/10.1002/malq.19940400306
  5. Discrete Applied Mathematics (Article in press) The lattices of closure systems, closure operators, and implicational systems on a finite set; a survey N.Caspard;B.Mongardet https://doi.org/10.1016/S0166-218X(02)00209-3
  6. Discrete Mathematics v.179 Lattices of closure operators A.Higuchi
  7. Universal of closure operators G.Gratzer https://doi.org/10.1016/S0012-365X(97)00099-X
  8. J. Fuzzy Math. v.2 Fuzzy closure spaces R.Srivastava;A.K.Srivastava;A.Choubey
  9. Discrete mathematics v.248 Psedocomplements of closure operators on posets F.Ranzato https://doi.org/10.1016/S0012-365X(01)00191-1
  10. Amer. Math. Soc. Lattice theory(3rd ed.) G.Birkhoff
  11. J. Math. Anal. Appl. v.106 Fuzzy closure spaces A.S.Mashhour;M.H.Ghanim https://doi.org/10.1016/0022-247X(85)90138-6
  12. J. Math. Anal. App. v.198 An extension principle for closure operators L.Biacino;G.Gerla https://doi.org/10.1006/jmaa.1996.0064

Cited by

  1. M-fuzzifying cotopological spaces and M-fuzzifying convex spaces as M-fuzzifying closure spaces vol.33, pp.1, 2017, https://doi.org/10.3233/JIFS-16661