DOI QR코드

DOI QR Code

THE m-TH ROOT FINSLER METRICS ADMITTING (α, β)-TYPES

  • Published : 2004.02.01

Abstract

The theory of m-th root metric has been developed by H. Shimada [8], and applied to the biology [1] as an ecological metric. The purpose of this paper is to introduce the m-th root Finsler metrics which admit ($\alpha,\;\beta$)-types. Especially in cases of m = 3, 4, we give the condition for Finsler spaces with such metrics to be locally Minkowski spaces.

Keywords

Berwald space;locally Minkowski;m-th root metric

References

  1. H. S. Park and E. S. Choi, On a Finsler spaces with a special ($\alpha,\;\beta$)-metric, Tensor (N.S.) 56 (1995), no. 2, 142-148.
  2. M. Matsumoto and K. Okubo, Theory of Finsler spaces with m-th root metric: Connections and main scalars, Tensor (N.S.) 56 (1995), no. 1, 93-104.
  3. H. Shimada, On Finsler spaces with the metric L = ($a_{i_{1}i_{2}...i_{m}}y^{i_{1}}y^{i_{2}}...y^{i_{m}})^{\frac{1}{m}}$, Tensor (N.S.) 33 (1979), no. 3, 365-372.
  4. Tensor (N.S.) v.56 no.1 Theory of Finsler spaces with m-th root metric:Connections and main scalars M.Matsumoto;K.Okubo
  5. Tensor (N.S.) v.50 no.3 A special class of locally Mikowski space with (α, β)-metric and conformally flat Kropina spaces M.Matsumoto
  6. The theory of sprays and Finsler spaces with applications in physics and biology P.L.Antonelli;R.Ingarden;M.Matsumoto
  7. Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem. v.22 On the condition that a Randers space be conformally flat Y.Ichijyo;M.Hashiguchi
  8. Tensor (N.S.) v.56 no.2 On a Finsler spaces with a special (α, β)-metric H.S.Park;E.S.Choi
  9. Tensor (N.S.) v.33 no.3 On Finsler spaces with the metric L=($a_{i_{1}i_{2}...i_{m}}y^{i_{1}}...y^{i_{2}}...y^{i_{m}})^frac{1}{m}$ H.Shimada
  10. Tensor (N.S.) v.33 no.2 On Finsler spaces with a cubic metric M.Matsumoto;S.Numata
  11. Rep. Math. Phys. v.31 no.1 Theory of Finsler spaces with (α, β)-metric https://doi.org/10.1016/0034-4877(92)90005-L

Cited by

  1. On an R-Randersmth-Root Space vol.2013, 2013, https://doi.org/10.1155/2013/649168
  2. Projectively Flat Fourth Root Finsler Metrics vol.55, pp.01, 2012, https://doi.org/10.4153/CMB-2011-056-5