DOI QR코드

DOI QR Code

ON A SUBCLASS OF CERTAIN STARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

  • Kamali, Muhammet ;
  • Orhan, Halit
  • Published : 2004.02.01

Abstract

A certain subclass $T_{\Omega}(n,\;p,\;\lambda,\;\alpha)$ of starlike functions in the unit disk is introduced. The object of the present paper is to derive several interesting properties of functions belonging to the class $T_{\Omega}(n,\;p,\;\lambda,\;\alpha)$. Coefficient inequalities, distortion theorems and closure theorems of functions belonging to the class $T_{\Omega}(n,\;p,\;\lambda,\;\alpha)$ are determined. Also we obtain radii of convexity for the class $T_{\Omega}(n,\;p,\;\lambda,\;\alpha)$. Furthermore, integral operators and modified Hadamard products of several functions belonging to the class $T_{\Omega}(n,\;p,\;\lambda,\;\alpha)$ are studied here.

Keywords

Starlike functions;Hadamard product;Radii of convexity;Salagean operator;p-valent

References

  1. Ann. Univ. Mariae Curie-Sklodowska Sect. v.A29 Convolutions of univalent functions with negative coefficients A.Schild;H.Silverman
  2. Rend. Sem. Math. Univ. Padova v.77 A note on certain classes of starlike functions H.M.Srivastava;S.Owa;S.K.Chatterjea
  3. Lecture Notes in Math. v.1013 Subclasses of univalent functions G.S.Salagean https://doi.org/10.1007/BFb0066543
  4. Math. Japon v.36 no.3 On a subclass of certain starlike functions with negative coefficients O.Altintas
  5. Comput. Math. Appl. v.30 no.2 Fractional calculus and certain starlike functions with negative coefficients O.Altintas;H.Irmak;H.M.Srivastava
  6. Turkish J. Math. v.20 no.3 Certain classes of analytic and multivalent functions with negative coefficients M.K.Aouf;A.Shamandy;A.A.Attiyia
  7. Appl. Math. Comput. v.145 no.2;3 On a subclass of certain convex functions with negative coefficients M.Kamali;S.Akbulut https://doi.org/10.1016/S0096-3003(02)00491-5
  8. Proc. Amer. Math. Soc. v.51 Univalent functions with negative coefficients H.Silverman https://doi.org/10.1090/S0002-9939-1975-0369678-0

Cited by

  1. Subordination and superordination preserving properties for generalized multiplier transformation operator vol.55, pp.3-4, 2012, https://doi.org/10.1016/j.mcm.2011.10.024
  2. SANDWICH THEOREMS FOR HIGHER-ORDER DERIVATIVES OF p-VALENT FUNCTIONS DEFINED BY CERTAIN LINEAR OPERATOR vol.48, pp.3, 2011, https://doi.org/10.4134/BKMS.2011.48.3.627
  3. Inclusion and neighborhood properties of certain subclasses of p-valent functions of complex order defined by convolution vol.65, pp.1, 2011, https://doi.org/10.2478/v10062-011-0004-7
  4. Subclass of Multivalent -Uniformly Functions with Varying Arguments vol.2013, 2013, https://doi.org/10.1155/2013/921543
  5. On integral operators for certain classes of p-valent functions associated with generalized multiplier transformations vol.22, pp.1, 2014, https://doi.org/10.1016/j.joems.2013.06.007
  6. Subordination Properties of Multivalent Functions Defined by Generalized Multiplier Transformation vol.2014, 2014, https://doi.org/10.1155/2014/187482
  7. Subordination properties ofp-valent functions defined by Sălăgean operator vol.55, pp.1-3, 2010, https://doi.org/10.1080/17476930902998951
  8. SOME INCLUSION RELATIONSHIPS ASSOCIATED WITH A CERTAIN CLASS OF INTEGRAL OPERATORS vol.03, pp.04, 2010, https://doi.org/10.1142/S1793557110000519
  9. Majorization properties for a new subclass of θ-spiral functions of order γ vol.64, pp.1, 2014, https://doi.org/10.2478/s12175-013-0185-3
  10. Sandwich theorems for higher-order derivatives of $$p$$ -valent functions defined by certain linear operator vol.25, pp.2, 2014, https://doi.org/10.1007/s13370-012-0127-1
  11. Some properties of certain classes of p-valent functions defined by the hadamard product vol.48, pp.6, 2013, https://doi.org/10.3103/S106836231306006X
  12. Differential subordination and superordination for certain subclasses of p-valent functions vol.51, pp.5-6, 2010, https://doi.org/10.1016/j.mcm.2009.12.027
  13. Subordination and superordination properties ofp-valent functions defined by a generalized fractional differintegral operator vol.39, pp.4, 2016, https://doi.org/10.2989/16073606.2015.1113212
  14. Multivalent functions associated with Srivastava–Saigo–Owa fractional differintegral operator 2017, https://doi.org/10.1007/s13398-017-0436-1
  15. Sandwich results for analytic functions involving with iterations of the Owa–Srivastava operator and its combination vol.07, pp.04, 2014, https://doi.org/10.1142/S1793557114500636
  16. Sandwich theorems for p-valent functions defined by a certain integral operator vol.53, pp.9-10, 2011, https://doi.org/10.1016/j.mcm.2010.12.030
  17. On a class of multivalent functions defined by an extended multiplier transformations vol.60, pp.3, 2010, https://doi.org/10.1016/j.camwa.2010.05.008
  18. On sandwich theorems for multivalent functions involving a generalized differential operator vol.61, pp.9, 2011, https://doi.org/10.1016/j.camwa.2011.02.050
  19. Differential sandwich theorems for higher-order derivatives ofp-valent functions defined by a linear operator vol.34, pp.1, 2011, https://doi.org/10.2989/16073606.2011.570290
  20. Class of Multivalent Analytic Functions Defined by a Linear Operator vol.2013, pp.2314-4971, 2013, https://doi.org/10.1155/2013/509717
  21. Subordinating results for p-valent functions associated with the Srivastava–Saigo–Owa fractional differintegral operator vol.29, pp.5-6, 2018, https://doi.org/10.1007/s13370-018-0582-4
  22. Sandwich results of p-valent functions defined by a generalized fractional derivative operator with application to vortex motion pp.1579-1505, 2018, https://doi.org/10.1007/s13398-018-0559-z
  23. Inclusion relations for subclasses of multivalent functions defined by Srivastava–Saigo–Owa fractional differintegral operator vol.29, pp.3-4, 2018, https://doi.org/10.1007/s13370-018-0567-3