DOI QR코드

DOI QR Code

CRITICAL POINTS AND WARPED PRODUCT METRICS

  • Published : 2004.02.01

Abstract

It has been conjectured that, on a compact orient able manifold M, a critical point of the total scalar curvature functional restricted the space of unit volume metrics of constant scalar curvature is Einstein. In this paper we show that if a manifold is a 3-dimensional warped product, then (M, g) cannot be a critical point unless it is isometric to the standard sphere.

References

  1. Manuscripta Math. v.103 no.2 Critical points of the scalar curvature functionals on the space of metrics of constant scalar curvature S.Hwang https://doi.org/10.1007/PL00005857
  2. J. Math. Soc. Japan v.14 Certain conditions for a Riemannian manifold to be isometric with a sphere M.Obata https://doi.org/10.2969/jmsj/01430333
  3. Proc. Amer. Math. Soc. v.131 no.10 The critical point equation on a three dimensional compact manifold https://doi.org/10.1090/S0002-9939-03-07165-X
  4. J. Math. Pures Appl. v.62 Sur la geometrie d'une generalisation de l'equation differentielle d'Obata
  5. Bull. Amer. Math. Soc. v.80 Manifolds of Riemannian metrics with prescribed scalar curvature A.E.Fischer;J.E.Marsden https://doi.org/10.1090/S0002-9904-1974-13457-9
  6. Einstein manifolds A.L.Besse
  7. Math. Ann. v.259 no.3 Remarques sur les varietes conformement plates J.Lafontaine https://doi.org/10.1007/BF01456943

Cited by

  1. A note on static spaces and related problems vol.74, 2013, https://doi.org/10.1016/j.geomphys.2013.07.003
  2. CRITICAL POINT METRICS OF THE TOTAL SCALAR CURVATURE vol.49, pp.3, 2012, https://doi.org/10.4134/BKMS.2012.49.3.655