DOI QR코드

DOI QR Code

김치에서 박테리오신을 분비하는 Lactobacillus sakei균주의 분리

Isolation of a Bacteriocin - Producing Lactobacillus sakei Strain from Kimchi

  • 김한택 (경상대학교 대학원 응용생명과학부 농업생명과학연구소) ;
  • 박재용 (경상대학교 대학원 응용생명과학부 농업생명과학연구) ;
  • 이강권 (삼성 에버랜드(주) 식품연구) ;
  • 김정환 (경상대학교 대학원 응용생명과학부 농업생명과학연구소)
  • 발행 : 2004.03.01

초록

배추김치로부터 식품유해균인 Listeria monocytogenes를 저해하는 박테리오신을 생산하는 유산균, Lactobacillus sakei P3-1이 분리되었다. 형태학적, 생화학적 특성조사와 최종적으로 PCR로 증폭하여 얻은 16S rDNA 염기서열 결정을 통해서 L. sakei로 동정되었다. L. sakei P3-1이 분비하는 박테리오신은 여러 그람 양성 및 음성균들 중에서 단지 L. monocytogenes만을 저해하는 그래서 저해범위가 매우 좁은 박테리오신으로 확인되었다. 이온교환 크로마토그래피에 의해서 박테리오신은 부분 정제되었으며 박테리오신의 열처리 안정성을 조사한 결과 121$^{\circ}C$에서 15분간 그리고10$0^{\circ}C$에서 10분간 열처리 후에도 각각 12.5%와 50%의 역가가 잔존하여 상당한 열안정성을 지니고 있음을 알 수 있었다. MRS배지에서 배양중 배양온도가 박테리오신 역가에 미치는 영향을 조사한 결과 3$0^{\circ}C$에서 배양할 때 그리고 18시간 이상 배양에서 가장 높은 1,000 AU/mL 역가를 보였다. 한편 SDS-PAGE 및 activity staining에 의해 측정된 박테리오신의 분자량은 4,000이었다. L. monocytogenes 생육 억제능, 작은 분자량 및 높은 열안정성 등의 성질들을 종합적으로 고려할 때 L. sakei P3-1이 생산하는 박테리오신은 박테리오신들 중에서 class II-a에 속하는 것으로 추정된다.

참고문헌

  1. Klaenhammer TR. 1988. Bacteriocin of lactic acid bacteria. Biochimie 70: 337-349. https://doi.org/10.1016/0300-9084(88)90206-4
  2. Oh SJ, Lee JH, Kim GT, Shin JG, Baek YJ. 2003. Anticarcinogenic activity of a bacteriocin produced by Lactococcus sp. HY 449. Food Sci Biotechnol 12: 9-12.
  3. Choi YO, Ahn C. 1997. Plasmid-associated bacteriocin production by Leuconostoc sp. LAB145-3A isolated from Kimchi. J Ind Microbiol 2: 319-322. https://doi.org/10.1007/BF01569434
  4. Stiles ME. 1996. Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek 70: 331-345. https://doi.org/10.1007/BF00395940
  5. Bredholt S, Nesbakken T, Holck A. 2001. Industrial application of an antilisterial strain of Lactobacillus sakei as a protective culture and its effect on the sensory acceptability of cooked, sliced, vacuum-packaged meats. Int J Food Microbiol 66: 191-196. https://doi.org/10.1016/S0168-1605(00)00519-5
  6. Goff JH, Bhumia AK, Johnsom MG. 1996. Complete inhibition of low levels of Listera monocytogenes of refrigerated chicken meat with pediocin AcH bound to heat killed Pediococcus acidilactici cell. J Food Prot 59: 1187-1192.
  7. Foegeding PM, Thomas AB, Pilkington DH, Klaenhammer TR. 1992. Enhance control of Listeria monocytogenes by in situ produced pediocin during dry fermented sausage production. Appl Environ Microbiol 58: 884-890
  8. Hugas M, Page F, Garriga M, Monfort JM. 1994. Application of the bacteriocinogenic Lactobacillus sakei CTC494 to prevent growth of Listeria in fresh and cooked meat products packed with different atmospheres. Food Microbiol 15: 143-149.
  9. Daeschel M. 1992. Procedures to detect antimicrobial activities of microorganism. In Food biopreservatives of microbial origin. CRC Press, Boca Raton. p 57.
  10. Moon GS, Jeong JJ, Ji GE, Kim JS, Kim JH. 2000. Characterization of a bacteriocin produced by Enterococcus sp. T7 isolated from humans. J Microbiol Biotechnol 10: 507-513.
  11. Lee KH, Moon GS, An JY, Lee HJ, Chang HC, Chung DK, Lee JH, Kim JH. 2002. Isolation of a nisin-producing Lactococcus lactis strain from Kimchi and characterization of its nisZ gene. J Microbiol Biotechnol 12: 389-397.
  12. Holt JG, Krieg NR, Sneath PH, AStaley JT, Williams ST. 1994. Bergeys Manual of Determinative Bacteriology. 9th ed. Williams and Wilkins, Baltimore, USA
  13. Escalante A, Wacher C, Farres A. 2001. Lactic acid bacterial diversity in the traditional Mexican fermented dough pozol as determined by 16S rDNA sequence analysis. Int J Food Microbiol 64: 21-31 https://doi.org/10.1016/S0168-1605(00)00428-1
  14. Marianne U, Havard HH, Ilia B, Jon NM, Gunnar F. 2002. Rapid two-step procedure for large-scale purification of pediocin-like bacteriocins and other cationic actimicroial peptides from complex culture medium. Appl Environ Microbiol 68: 952-956. https://doi.org/10.1128/AEM.68.2.952-956.2002
  15. Ivvanova I, Miteva V, Stefanova T, Pantev A, Budakov I, Danova S, Moncheva P, Nikolova I, Dousset X, Boyaval P. 1998. Characterization of a bacteriocin produced by Streptococcus thermophilus 81. Int J Food Microbiol 42: 147-158. https://doi.org/10.1016/S0168-1605(98)00067-1
  16. Laemmli UK. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  17. Bhunia AK, Johnson MC, Ray B. 1987. Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Ind Microbiol 2: 319-322. https://doi.org/10.1007/BF01569434
  18. Kim SY, Lee YM, Lee SY, Lee YS, Kim JH, Ahn C, Kang BC, Ji GE. 2001. Synergistic effect of citric acid and pediocin K1, a bacteriocin produced by Pediococcus sp. K1, on inhibition of Listeria monocytogenes. J Microbiol Biotechnol 11: 831-837.
  19. Kim HT, Park JY, Lee GG, Kim JH. 2003. Isolation of a bacteriocin-producing Lactobacillus plantarum strain from Kimchi. Food Sci Biotechnol 12: 166-170.
  20. Klaenhammer TR. 1993. Genetics of bacteriocin produced by lactic acid bacteria. FEMS Microbiol Rev 34: 145-156.

피인용 문헌

  1. Kimchi microflora: history, current status, and perspectives for industrial kimchi production vol.98, pp.6, 2014, https://doi.org/10.1007/s00253-014-5513-1
  2. Antibacterial activity of supernatant obtained from Weissella koreensis and Lactobacillus sakei on the growth of pathogenic bacteria vol.43, pp.3, 2016, https://doi.org/10.7744/kjoas.20160044
  3. Isolation and identification of soycurd forming lactic acid bacteria which produce GABA from kimchi vol.20, pp.5, 2013, https://doi.org/10.11002/kjfp.2013.20.5.705