DOI QR코드

DOI QR Code

RADICALS OF A LEFT-SYMMETRIC ALGEBRA ON A NILPOTENT LIE GROUP

  • Chang, Kyeong-Soo (Department of Mathematical Sciences, Seoul National University) ;
  • Kim, Hyuk (Department of Mathematical Sciences, Seoul National University) ;
  • Lee, Hyun-Koo (Department of Mathematical Sciences, Seoul National University)
  • Published : 2004.05.01

Abstract

The purpose of this paper is to compare the radicals of a left symmetric algebra considered in 〔1〕 when the associated Lie algebra is nilpotent. In this case, we show that all the radicals considered there are equal. We also consider some other radicals and show they are also equal.

References

  1. Ann. Inst. Fourier(Grenoble) v.29 no.4 Radical d'une algebre symmetrique a gauche J.Helmstetter
  2. Tensor, N. S. v.44 no.1 On the radical of a left symmetric algebra Ⅲ A.Mizuhara
  3. Introduction to Lie groups and Lie algebras A.A.Sagle;R.E.Walde
  4. Tensor, N. S. v.44 no.2 On left symmetric algebras over a real nilpotent Lie algebra A.Mizuhara
  5. J. Korean math. Soc. v.33 no.4 The geometry of left-symmetric algebra H.Kim
  6. Math. Ann. v.293 no.3 The structure of complete left-symmetric algebras D.Segal https://doi.org/10.1007/BF01444735
  7. Tensor, N. S. v.41 no.1 On the symmetric algebras over a nilpotent complex Lie algebra A.Mizuhara
  8. Proc. Amer. Math. Soc. v.47 Translations in certain groups of affine motions J.Scheuneman https://doi.org/10.1090/S0002-9939-1975-0372120-7
  9. An Introduction to nonassociative algebras Schafer
  10. Comm. Algebra v.27 no.7 Radicals of a left-symmetric algebra K.S.Chang;H.Kim;H.C.Myung https://doi.org/10.1080/00927879908826619
  11. Mutations of alternative algebras A.Elduque;H.C.Myung
  12. Tensor, N. S. v.36 no.3 On the radical of a left-symmetric algebra A.Mizuhara
  13. Trans. Amer. Math. Soc. v.295 no.1 Affine manifolds and orbits of algebraic groups W.Goldman;M.Hirsh https://doi.org/10.1090/S0002-9947-1986-0831195-0
  14. J. Differential Geom. v.24 no.3 Complete left-invariant affine structures on nilpotent Lie groups H.Kim

Cited by

  1. Left-symmetric algebras, or pre-Lie algebras in geometry and physics vol.4, pp.3, 2006, https://doi.org/10.2478/s11533-006-0014-9