DOI QR코드

DOI QR Code

A NOTE ON THE LOCAL HOMOLOGY

  • Rasoulyar, S. (Department of Mathematics of Faculty of Scienc, University of Kurdistan)
  • Published : 2004.05.01

Abstract

Let A be Noetherian ring, a= (${\tau}_1..., \tau_n$ an ideal of A and $C_{A}$ be category of A-modules and A-homomorphisms. We show that the connected left sequences of covariant functors ${limH_i(K.(t^t,-))}_{i\geq0}$ and ${lim{{Tor^A}_i}(\frac{A}{a^f}-)}_{i\geq0}$ are isomorphic from $C_A$ to itself, where $\tau^t\;=\;{{\tau_^t}_1$, ㆍㆍㆍ${\tau^t}_n$.

References

  1. Southeast Asian Bull. Math. v.24 no.1 The theory of local homology for Artinian modules M.T.Dibaei;K.Divaani-Aazar https://doi.org/10.1007/s10012-000-0031-8
  2. Comm. Algebra v.1 The Koszul complex adn duality E.Matlis https://doi.org/10.1080/00927877408548611
  3. J. Algebra v.50 no.1 The higher properties of R-Sequences E.Mathlis https://doi.org/10.1016/0021-8693(78)90176-X
  4. Commutative ring theory H.Matsumora
  5. An introduction to homological algebra D.G.Northcott
  6. Math. Proc. Cambridge Philos. Soc. v.108 no.2 Some homological properties of complete modules A.V.Simon https://doi.org/10.1017/S0305004100069103
  7. Publications Mathematiques v.36 no.2B Adic completion and some dual homological results A.M.Simon
  8. London Math. Soc.;Lect. Note Ser. v.145 Homological qustions in local algebra J.R.Strooker
  9. Comm. Algebra v.22 no.5 Local homology theory for Artinian modules Z.Tang https://doi.org/10.1080/00927879408824928
  10. An introduction to homological Algebra C.A.Weibel