CLOSURE OPERATORS ON BL-ALGEBRAS

DOI QR코드

DOI QR Code

Ko, Jung-Mi;Kim, Yong-Chan

  • 발행 : 2004.04.01

초록

We study relationships between closure operators and BL-algebras. We investigate the properties of closure operators and BL-homomorphisms on BL-algebras. We show that the image of a closure operator on a BL-algebra is isomorphic to a quotient BL-algebra.

키워드

closure operators;BL-algebras;deductive systems;BL-homomorphism;quotient BL-algebras.

참고문헌

  1. A. S. Mashhour and M.H. Ghanim, Fuzzy closure spaces, J. Math. Anal. Appl. 106 (1985), 154-170. https://doi.org/10.1016/0022-247X(85)90138-6
  2. J. M. Ko and Y. C. Kim, Some properties of BL-algebras, J. of Fuzzy Logic and Intelligent Systems 11(3) (2001), 286-291.
  3. E. Turunen, Algebraic structures in fuzzy logic, Fuzzy Sets and Systems 52 (1992), 181-188. https://doi.org/10.1016/0165-0114(92)90048-9
  4. F. Ranzato, Psedocomplements of closure operators on posets, Discrete Math. 248 (2002), 143-155. https://doi.org/10.1016/S0012-365X(01)00191-1
  5. E. Turunen, Mathematics behind fuzzy logic, A Springer-Verlag Co., 1999.
  6. R. Srivastava and A. K. Srivastava and A. Choubey, Fuzzy closure spaces, J. Fuzzy Math. 2 (1994), 525-534.
  7. Discrete Appl. Math. v.127 pp.241-269 The lattices of closure systems,closure operators, and implicational systems on a finite set:a survey N.Caspard;B.Monjardet https://doi.org/10.1016/S0166-218X(02)00209-3
  8. Universal Algebra G.Gratzer
  9. J. Math. Anal. Appl. v.201 pp.786-826 On the fundamentals of fuzzy set theory U.Hohle https://doi.org/10.1006/jmaa.1996.0285
  10. Inform. Sci. v.106 pp.49-69 Extension principles for fuzzy set theory G.Gerla;L.Scarpati https://doi.org/10.1016/S0020-0255(97)10003-2
  11. Metamathematices of Fuzzy Logic P.Hajek
  12. Fuzzy Sets and Systems v.138 pp.149-176 On a class of residuated semilattice monoid P.Flondor;M.Sularia https://doi.org/10.1016/S0165-0114(02)00390-1
  13. Mathematics of fuzzy sets U.Hohle;S.E.Rodabaugh
  14. J. Approx. Reason v.18 pp.217-229 Mv-algebras embedded in a CL-algebra,Internat. M.K.Chakraborty;J.Sen https://doi.org/10.1016/S0888-613X(98)00007-3
  15. Lattice theory,3rd Edition,A.M.S. G.Birkhoff
  16. J. Math. Anal. Appl. v.251 pp.106-131 Boolean products of BL-algebras A.Dinola;G.Georgescu;L.Leustean https://doi.org/10.1006/jmaa.2000.7024
  17. Math. Log. Quart. v.40 pp.357-380 A extension principle for fuzzy logics G.Gerla https://doi.org/10.1002/malq.19940400306
  18. Discrete Math v.179 pp.267-272 Lattices of closure operators Ah.Higuchi https://doi.org/10.1016/S0012-365X(97)00099-X
  19. J. Math. Anal. Appl. v.198 pp.1-24 An extension principle for closure operators L.Biacino;G.Gerla https://doi.org/10.1006/jmaa.1996.0064
  20. Fuzzy Sets and Systems v.133 pp.277-297 Initial L-fuzzy closure spaces Y.C.Kim https://doi.org/10.1016/S0165-0114(02)00224-5

피인용 문헌

  1. 1. Metrizability on (semi)topological BL-algebras vol.16, pp.10, 2012, doi:10.4134/CKMS.2004.19.2.219
  2. 2. Separation axioms in (semi)topological quotient BL-algebras vol.16, pp.7, 2012, doi:10.4134/CKMS.2004.19.2.219
  3. 3. Folding theory applied to BL-algebras vol.2, pp.4, 2004, doi:10.4134/CKMS.2004.19.2.219
  4. 4. Uniform topology on EQ-algebras vol.15, pp.1, 2017, doi:10.4134/CKMS.2004.19.2.219
  5. 5. Topology on BL-algebras vol.289, 2016, doi:10.4134/CKMS.2004.19.2.219