• Park, Kyoo-Hong (Department of Mathematics Education Seowon University) ;
  • Jung, Yong-Soo (Department of Mathematics Chungnam National University)
  • Published : 2004.04.01


In this note, by using the fixed point alternative, we investigate the modified Hyers-Ulam-Rassias stability for the following mixed type functional inequality which is either cubic or quadratic: $\parallel$8f(x-3y) + 24f(x+y) + f(8y) -8〔f(x+3y) + 3f(x-y) + 2f(2y)〕$\parallel$$\leq$$\varphi$(x,y).


stability;cubic function;quadratic function;fixed point alternative


  1. Abh. Math. v.62 On the stability of the quadratic mapping in normed spaces S.Czerwik
  2. J. Math. Anal. Appl. v.184 A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings P.Gavruta
  3. Bull. Amer. Math. Soc. v.126 no.74 A fixed point theorem of the alternative for contractions on a generalized complete metric space B.Margolis;J.B.Diaz
  4. Proc. Amer. Math. Soc, v.72 On the stability of the linear mapping in Banach spaces Th. M. Rassias
  5. Stability of Functional Equations in Several Variables D.H.Hyers;G.Isac;Th.M.Rassias
  6. Functional Equations and inequalities Th.M.Rassias(ed.)
  7. Aequationes Math. v.44 Approximate homomorphisms D.H.Hyers;Th.M.Rassias
  8. J. Math. Anal. Appl. v.274 no.2 The generalized Hyers-Ulam-Rassias stability of a cubic functional equation K.W.Jun;H.M.Kim
  9. Proc. Amer. Math. Soc. v.126 On the asymptoticity aspect of Hyers-Ulam stability of mappings
  10. Results Math. v.27 Quadratic functional equation and inner product spaces Pl.Kannappan
  11. Proc. Amer. Math. Soc, v.80 The stability of the cosine equation J.Baker
  12. Glas. Mat. v.36 no.1 Solution of the Ulam stability problem for cubic mappings J.M.Rassias
  13. Functional Equations in Serveral Variables J.Aczel;J.Dhombres
  14. Stability of mappings of Hyers-Ulam type
  15. Aequationes Math. v.27 Remarks on the stability of functional equations P.W.Cholewa
  16. Journal of Natural Geometry v.1 What is left of Hyers-Ulam stability
  17. Rend. Sem. Mat. Fis. Milano v.53 Proprieta locali e approssimazione di operatori F.Skof
  18. J. Math. Anal. Appl. v.276 On the Ulam stability of the mixed type mappings on restricted domains
  19. Science Problems in Modern Mathematics S.M.Ulam
  20. J. Math. Anal. Appl. v.222 On the Hyers-Ulam stability of the functional equations that have the quadratic property S.M.Jung
  21. J. Math. Anal. Appl. v.274 no.2 On the stability of the functional equation f(x+y+xy)=f(x)+f(y)+xf(y)+yf(x)+yf(x) Y.S.Jung;K.H.Park
  22. Proc. Amer. Math. Soc, v.114 On the behavior of mappings which does not satisfy Hyers-Ulam stability Th.M.Rasslas;P.Semrl
  23. Trans. Amer. Math. Soc. v.364 no.11 The space of (φ,γ)-additive mappings on semigroups V.A.Faiziev;Th.M.Rassias;P.K.Sahoo
  24. Acta Math. Appl. v.62 On the stability of functional equations and a problem of Ulam
  25. J. Math. Anal. Appl. v.251 On the stability of functional equations in Banach spaces
  26. Proc. Natl. Acad. Sci. v.27 On the stability of the linear fuctional equation D.H.Hyers
  27. Seminar on Fixed Point Theory Cluj-Napoca v.Ⅳ The fixed point alternative and the stability of functional equations V.Radu