DOI QR코드

DOI QR Code

THE STABILITY OF A MIXED TYPE FUNCTIONAL INEQUALITY WITH THE FIXED POINT ALTERNATIVE

  • Park, Kyoo-Hong (Department of Mathematics Education Seowon University) ;
  • Jung, Yong-Soo (Department of Mathematics Chungnam National University)
  • Published : 2004.04.01

Abstract

In this note, by using the fixed point alternative, we investigate the modified Hyers-Ulam-Rassias stability for the following mixed type functional inequality which is either cubic or quadratic: $\parallel$8f(x-3y) + 24f(x+y) + f(8y) -8〔f(x+3y) + 3f(x-y) + 2f(2y)〕$\parallel$$\leq$$\varphi$(x,y).

Keywords

stability;cubic function;quadratic function;fixed point alternative

References

  1. Abh. Math. v.62 On the stability of the quadratic mapping in normed spaces S.Czerwik https://doi.org/10.1007/BF02941618
  2. J. Math. Anal. Appl. v.184 A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings P.Gavruta https://doi.org/10.1006/jmaa.1994.1211
  3. Bull. Amer. Math. Soc. v.126 no.74 A fixed point theorem of the alternative for contractions on a generalized complete metric space B.Margolis;J.B.Diaz
  4. Proc. Amer. Math. Soc, v.72 On the stability of the linear mapping in Banach spaces Th. M. Rassias https://doi.org/10.2307/2042795
  5. Stability of Functional Equations in Several Variables D.H.Hyers;G.Isac;Th.M.Rassias
  6. Functional Equations and inequalities Th.M.Rassias(ed.)
  7. Aequationes Math. v.44 Approximate homomorphisms D.H.Hyers;Th.M.Rassias https://doi.org/10.1007/BF01830975
  8. J. Math. Anal. Appl. v.274 no.2 The generalized Hyers-Ulam-Rassias stability of a cubic functional equation K.W.Jun;H.M.Kim https://doi.org/10.1016/S0022-247X(02)00415-8
  9. Proc. Amer. Math. Soc. v.126 On the asymptoticity aspect of Hyers-Ulam stability of mappings https://doi.org/10.1090/S0002-9939-98-04060-X
  10. Results Math. v.27 Quadratic functional equation and inner product spaces Pl.Kannappan https://doi.org/10.1007/BF03322841
  11. Proc. Amer. Math. Soc, v.80 The stability of the cosine equation J.Baker https://doi.org/10.2307/2043730
  12. Glas. Mat. v.36 no.1 Solution of the Ulam stability problem for cubic mappings J.M.Rassias
  13. Functional Equations in Serveral Variables J.Aczel;J.Dhombres
  14. Stability of mappings of Hyers-Ulam type
  15. Aequationes Math. v.27 Remarks on the stability of functional equations P.W.Cholewa https://doi.org/10.1007/BF02192660
  16. Journal of Natural Geometry v.1 What is left of Hyers-Ulam stability
  17. Rend. Sem. Mat. Fis. Milano v.53 Proprieta locali e approssimazione di operatori F.Skof https://doi.org/10.1007/BF02924890
  18. J. Math. Anal. Appl. v.276 On the Ulam stability of the mixed type mappings on restricted domains https://doi.org/10.1016/S0022-247X(02)00439-0
  19. Science Problems in Modern Mathematics S.M.Ulam
  20. J. Math. Anal. Appl. v.222 On the Hyers-Ulam stability of the functional equations that have the quadratic property S.M.Jung https://doi.org/10.1006/jmaa.1998.5916
  21. J. Math. Anal. Appl. v.274 no.2 On the stability of the functional equation f(x+y+xy)=f(x)+f(y)+xf(y)+yf(x)+yf(x) Y.S.Jung;K.H.Park https://doi.org/10.1016/S0022-247X(02)00328-1
  22. Proc. Amer. Math. Soc, v.114 On the behavior of mappings which does not satisfy Hyers-Ulam stability Th.M.Rasslas;P.Semrl https://doi.org/10.2307/2159617
  23. Trans. Amer. Math. Soc. v.364 no.11 The space of (φ,γ)-additive mappings on semigroups V.A.Faiziev;Th.M.Rassias;P.K.Sahoo
  24. Acta Math. Appl. v.62 On the stability of functional equations and a problem of Ulam https://doi.org/10.1023/A:1006499223572
  25. J. Math. Anal. Appl. v.251 On the stability of functional equations in Banach spaces https://doi.org/10.1006/jmaa.2000.7046
  26. Proc. Natl. Acad. Sci. v.27 On the stability of the linear fuctional equation D.H.Hyers https://doi.org/10.1073/pnas.27.4.222
  27. Seminar on Fixed Point Theory Cluj-Napoca v.Ⅳ The fixed point alternative and the stability of functional equations V.Radu