# CONVERGENCE THEOREMS OF THE ITERATIVE SEQUENCES FOR NONEXPANSIVE MAPPINGS

• Kang, Jung-Im (Department of Mathematics the Research Institute of Natural Sciences Gyeongsang National University) ;
• Cho, Yeol-Je (Department of Mathematics the Research Institute of Natural Sciences Gyeongsang National University) ;
• Zhou, Hai-Yun (Department of Mathematics Shijiazhuang Mechanical Engineering College)
• Published : 2004.04.01
• 52 2

#### Abstract

In this paper, we will prove the following: Let D be a nonempty of a normed linear space X and T : D -> X be a nonexpansive mapping. Let ${x_n}$ be a sequence in D and ${t_n}$, ${s_n}$ be real sequences such that (i) $0\;{\leq}\;t_n\;{\leq}\;t\;<\;1\;and\;{\sum_{n=1}}^{\infty}\;t_n\;=\;{\infty},\;(ii)\;(a)\;0\;{\leq}\;s_n\;{\leq}\;1,\;s_n\;->\;0\;as\;n\;->\;{\infty}\;and\;{\sum_{n=1}}^{\infty}\;t_ns_n\;<\;{\infty}\;or\;(b)\;s_n\;=\;s\;for\;all\;n\;{\geq}\;1\;and\;s\;{\in}\;[0,1),\;(iii)\;x_{n+1}\;=\;(1-t_n)x_n+t_nT(s_nTx_n+(1-s_n)x_n)\;for\;all\;n\;{\geq}\;1.$ Then, if the sequence {x_n} is bounded, then $lim_{n->\infty}\;$\mid$$\midx_n-Tx_n\mid$$\mid$\;=\;0$. This result improves and complements a result of Deng . Furthermore, we will show that certain conditions on D, X and T guarantee the weak and strong convergence of the Ishikawa iterative sequence to a fixed point of T.

#### Keywords

nonexpansive mapping;Ishikawa iterative sequence;strong and weak convergence theorems.

#### References

1. J. Math. Anal. Appl. v.199 Convergence of the Ishkawa iterates for nonexpansive mappings L.Deng https://doi.org/10.1006/jmaa.1996.0174
2. Iterative Methods for Nonlinear Operator Equations in Banach spaces S.S.Chang;Y.J.Cho;H.Y.Zhou
3. J. Math. Anal. Appl. v.178 Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process K.K.Tan;H.K.Xu https://doi.org/10.1006/jmaa.1993.1309
4. Proc. Amer. Math. Soc. v.59 Fixed points and iteration of a nonexpansive mapping in a Banach space S.Ishikawa https://doi.org/10.1090/S0002-9939-1976-0412909-X
5. Proc. Amer. Math. Soc. v.44 Approximating fixed points of nonexpansive mappings H.F.Senter;W.G.Dotson,Jr. https://doi.org/10.1090/S0002-9939-1974-0346608-8
6. Contemporary Math. v.21 Iteration process for nonexpansive mappings K.Goebel;W.A.Kikr https://doi.org/10.1090/conm/021/729507