DOI QR코드

DOI QR Code

Three Dimensional Optimum Design of Endosseous Implant in Dentistry by Multilevel Response Surface Optimization

다단계 반응표면법을 이용한 치과용 임플란트의 3차원 형상최적설계

  • 한중석 (서울대학교 치과대학 보철학교실) ;
  • 김종수 (한국항공대학교 대학원 항공우주 및 기계공학부) ;
  • 최주호 (한국항공대학교 항공우주 및 기계공학)
  • Published : 2004.07.01

Abstract

In this paper, an optimum design problem for endosseous implant in dentistry is studied to find best implant design. An optimum design problem is formulated to reduce stresses arising at the cortical as well as cancellous bones, in which sufficient design parameters are chosen for design definition that encompasses major implants in popular use. Optimization at once (OAO) with the large number of design variables, however, causes too costly solution or even failure to converge. A concept of multilevel optimization (MLO) is employed to this end, which is to group the design variables of similar nature, solve the sub-problem of smaller size for each group in sequence, and this is iterated until convergence. Each sub-problem is solved based on the response surface method (RSM) due to its efficiency for small sized problem.

Keywords

Multilevel Optimization;Response Surface;Endosseous Implant;Cancellous Bone;Cortical Bone

References

  1. Raymond, H. M. and Douglas, C. M., 'Response Surface Methodology,' John willey & Sons, Inc.
  2. Jemt, T., 1989, 'Osseointegrated Implants in the Treatment of Partially Edentulous Patients,' J. Oral Maxillofac. Implants, 4, pp. 211-217
  3. Lavelle, C. B., 1993, 'Biomechanical Considerations of Prosthodontic Therapy The Urgency of Research into Alveolar Bone Responses,' Int. J. Oral Maxillofac. Implants. 8, p. 179
  4. Belegundu, A. D. and Chandrupatla, T. R., 1999, 'Optimization Concepts and Applications in Engineering,' Prentice-Hall, Inc, 11. pp. 373-384
  5. Frost, H. M., 1990, 'Skeletal Structural Adaptations to Mechanical Usage(SATMU): 1. Rede-Fining Wolfs law; The bone modeling problem,' Anatomical Records, 226, pp. 403-413 https://doi.org/10.1002/ar.1092260402
  6. Ridger, M. R., Mayberry, M. and Brose, M. O., 1990 'Finte Element Analysis of Six endosseous Implants,' The Journal of Prosthetic Dentistry, Vol. 63, pp.671-676 https://doi.org/10.1016/0022-3913(90)90325-7
  7. VisualDoc Theoretical Manual, Vanderplaats Research & Development, Inc.
  8. Wolff, J., 1892, 'Das Gesetz der Transformation der Jnochen, A. Hirschwald,' Berlin
  9. Brunski, J. B., 1988, 'Biomaterial and Biomechanics in Dental Implant Design,' Int. J. Oral Mexillofac Implants., 3, pp. 85-97
  10. Han, J.S., Seo, K.Y. and Choi, J.H., 2003. 'Optimum Design of Endosseous Implant in Dentistry by Multilevel Optimization Method,' Journal of KSME (A), Vol. 27, No. 1, pp. 144-151 https://doi.org/10.3795/KSME-A.2003.27.1.144
  11. Vanderplaats, G. N., 1984, 'Numerical Optimization Techniques for Engineering Design,' McGraw-Hill
  12. Singirewu, S. R., 1996, 'Engineering Optimization,' John willey & Sons, Inc.
  13. ANSYS Structural Analysis Guide Release 6.1, Inc. 2002
  14. Brunski, J. B., 1992, 'Biomechanical Factors Affecting the Bone-Dental Implant Interface,' Clin Mater, 10, pp. 153-201 https://doi.org/10.1016/0267-6605(92)90049-Y