Preparation of PVA/PAM/Zirconium phosphate Membrane for Proton Exchange Membranes

양이온교환용 PVA/PAM/Zirconium phosphate 막의 제조

  • 임지원 (한남대학교 공과대학 화학공학과) ;
  • 황호상 (한남대학교 공과대학 화학공학) ;
  • 김영진 (경상대학교 공과대학 고분자공학과, 공학연구) ;
  • 남상용 (경상대학교 공과대학 고분자공학과, 공학연구원)
  • Published : 2004.06.01

Abstract

Proton exchange membrane composed of PVA/PAM/ZrP was prepared and effect of PAM and ZrP contents on properties and performance of the membrane were investigated. PAM as a crosslinking agent was mixed into PVA solution with different concentration (7∼11 wt%) and the PVA/PAM solution was cast to prepare PVA/PAM crosslinked membrane. The membrane was treated in the solution of zirconyl chloride and phophoric acid to make a PVA/PAM/ZrP composite membrane. Methanol permeability, ion conductivity, swelling and ion exchange capacity of the membranes with different ZrP concentration were $10^{-8}∼l0^{-6}$ $\textrm{cm}^2$/sec, $10^{-3}~10^{-2}$ S/cm, 0.26∼1.17 g $H_2O$/g membrane and 2.59∼5.1 meq/g membrane, respectively. Hethanol permeability and ion conductivity of the PVA/PAM/ZrP membrane were improved by 18% and 23%, respectively, compared to those of the PVA/PAM membrane.

References

  1. Platinum Met. Rev. v.40 M.P.Hogarth;G.A.Hard
  2. J. Membr. Sci. v.154 Pervaporation membranes in direct methanol fuel cells Bryan S. Pivovar;Yuxin Wang;E.L.Cussler https://doi.org/10.1016/S0376-7388(98)00264-6
  3. J. App. Polym. Sci. v.73 Properties of electroresponsive poly(vinylacohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus S.Y.Kim;H.S.Shin;Y.M.Lee;C.N.Jeong https://doi.org/10.1002/(SICI)1097-4628(19990829)73:9<1675::AID-APP8>3.0.CO;2-9
  4. J. Appl. Polym. Sci. v.69 Pervaporation of alcohol-toluene mixtures through polymer network hydrogels composed of poly(vinyl alcohol) and poly(acrylic acid) H.C.Park;M.H.V.Mulder https://doi.org/10.1002/(SICI)1097-4628(19980718)69:3<479::AID-APP7>3.0.CO;2-D
  5. Ind. Eng. Chem. Res. v.37 Sorption of alcohol-toluene mixtures in poly (acrylic acid)-poly(vinyl alcohol) blend membranes and its role on pervaporation H.C.Park;R.M.Meertens;M.H.V.Mulder https://doi.org/10.1021/ie980117k
  6. Membrane J. v.8 Pervaporation separation of MTBE-methanol mixture using PVA/PAA crosslinked membranes J.W.Rhim;Y.K.Kim
  7. Membrane J. v.11 Salt effect of metal ion substituted membranes for water-alcohol systems using pervaporation processes J.W.Rhim;J.H.Jun
  8. Membrane J. v.12 Studies on the methanol permeability through PVA/SSA ion exchange membranes substituted with various metal cations C.S.Lee;S.Y.Jung;J.H.Jun;H.S.Shin;J.W.Rhim
  9. Membrane J. v.12 Preparation and characterization of ion exchange membrane for direct methanol fuel cell (DMFC) using sulfonated polysulfone H.S.Shin;C.S.Lee;J.H.Jun;S.Y.Jung;J.W.Rhim;S.Y.Nam
  10. Membrane J. v.12 Pervaporation separation of aqueous ethanol solution through poly(vinyl alcohol) membranes crosslinked poly(acrylic acid-co-maleic acid) S.Y.Nam;K.S.Sung;S.W.Cheon;J.W.Rhim
  11. Membrane J. v.13 The effect of PAA on the characterization of PVA/SSA ion exchange membrane S.W.Cheon;S.H.Hong;H.S.Hwang;S.I.Jeong;J.W.Rhim
  12. J. membr. Sci. Proton conductivity and methanol permeability of crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group J.W.Rhim;H.B.Park;C.S.Lee;J.H.Jun;Y.M.Lee
  13. J. Electrochem. Sci. v.145 Proton and methanol transport in poly (perfluorosulfonate)membranes containing ${Cs}^+$ and $H^+$ cations V.Tricoli https://doi.org/10.1149/1.1838876
  14. Diffusion E.L.Cussler
  15. 喜多見書房 膜學實驗法 中垣正幸
  16. J. Mem. Soc. v.156 G.J.Hwang;Toshiyuki Nagai https://doi.org/10.1016/S0376-7388(98)00331-7
  17. Separation and Purification Technology v.14 W.Cui;J.Kerres;G.Eigenberger https://doi.org/10.1016/S1383-5866(98)00069-0
  18. J. Membr. Sci. v.154 Pervaporation membranes in direct methanol fuel cells Bryan S. Pivovar;Yuxin Wang;E.L.Cussler https://doi.org/10.1016/S0376-7388(98)00264-6
  19. J. Membr. Sci. v.156 Ion exchange membrane based on block copolymers. Part Ⅲ: preparation of cation exchange membrane G.J.Hwang;Toshiyuki Nagai https://doi.org/10.1016/S0376-7388(98)00331-7
  20. J. A. Electrochem. v.29 T.Lehtinen;G.Sundholm
  21. J. Membr. Sci. v.154 Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes Qunhui Guo;Sally O'Connor;Peter N. Pintauro;Hao Tang https://doi.org/10.1016/S0376-7388(98)00282-8
  22. J. Membr. Sci. v.166 Ionomeric membranes based on partially sulfonated poly(styrene):synthesis, proton conduction and methanol permeation N.Carretta;V.Tricoli;F.Picchioni
  23. J. Power Sources v.96 Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell Won Choon Choi;Seong Ihl Woo https://doi.org/10.1016/S0378-7753(00)00602-9
  24. J. Power Sources v.84 A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells A.Heinzel;V.M.Barragan https://doi.org/10.1016/S0378-7753(99)00302-X
  25. US Patent 5,919,503 Membranes containing inorganic fillers and membrane electrode assemblies and electrochemical cells employing same W.G.Grot;G.Rajendran
  26. J. Membr. Sci. v.203 Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells S.P.Nunes;B.Ruffmann;E.Rikowski;S.Vetter;K.Richau https://doi.org/10.1016/S0376-7388(02)00009-1
  27. J. Membr. Sci. A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes C.Yang;S.Srinivasan;A.B.Bocarsly;S.Tulyani;J.B.Bezinger
  28. Solid State Ionics v.162-163 Organic/inorganic composite membranes for application in DMFC B.Ruffmann;H.Silve;B.Schulte;S.P.Nunes https://doi.org/10.1016/S0167-2738(03)00240-6