DOI QR코드

DOI QR Code

Bayesian Change Point Analysis for a Sequence of Normal Observations: Application to the Winter Average Temperature in Seoul

정규확률변수 관측치열에 대한 베이지안 변화점 분석 : 서울지역 겨울철 평균기온 자료에의 적용

  • 김경숙 (전남대학교 자연과학대학 통계학과) ;
  • 손영숙 (전남대학교 자연과학대학 통계학과)
  • Published : 2004.07.01

Abstract

In this paper we consider the change point problem in a sequence of univariate normal observations. We want to know whether there is any change point or not. In case a change point exists, we will identify its change type. Namely, it can be a mean change, a variance change, or both the mean and variance change. The intrinsic Bayes factors of Berger and Pericchi (1996, 1998) are used to find the type of optimal change model. The Gibbs sampling including the Metropolis-Hastings algorithm is used to estimate all the parameters in the change model. These methods are checked via simulation and applied to the winter average temperature data in Seoul.

References

  1. Journal of the American Statistical Association v.91 no.433 The intrinsic Bayes factor for model selection and prediction Berger, J. O.;Pericchi, L. R. https://doi.org/10.2307/2291387
  2. Sankhya, B v.60 Accurate and stable Bayesian model selection:the median intrinsic Bayes factor Berger, J. O.;Pericchi, L. R.
  3. Annals of Mathematical Statistics v.35 Estimating the current mean of a normal distribution which is subject to changes over-time Chernoff H.;Zacks S. https://doi.org/10.1214/aoms/1177700517
  4. Technometrics v.19 A shift of the mean level in a sequence of independent normal random variables - A Bayesian approach Lee, A. S. F.;Heghinian, S. M. https://doi.org/10.2307/1267892
  5. Biometrika v.38 The time intervals between industrial accidents Maguire B. A.;Pearson, E. S.;Wynn, A. H. A.
  6. Applied Statistics v.30 A Bayesian analysis of a change in the precision of a sequence of independent normal ramdom variables at an unknown time point Menzefricke, U. https://doi.org/10.2307/2346383
  7. Monte Carlo methods in Bayesian computation Ming-Hui Chen;Qi-Man Shao;Joseph G. Ibrahim
  8. Biometrika v.41 Continuous inspections schemes Page E. S. https://doi.org/10.1093/biomet/41.1-2.100
  9. Biometrika v.42 A test for a change in parametric occurring at an unknown point Page E. S. https://doi.org/10.1093/biomet/42.3-4.523
  10. Biometrika v.44 On problems on which a change in a parameter occurs at an unknown point Page E. S. https://doi.org/10.1093/biomet/44.1-2.248
  11. Journal of Hydrology v.235 Bayesian change-point analysis in hydrometeorological time series. Part 1. The normal model revisited Perreault, L.;Bernier, J.;Bobe, B;Parent, E. https://doi.org/10.1016/S0022-1694(00)00270-5
  12. Journal of Hydrology v.235 Bayesian change-point analysis in hydrometeorological time series. Part 2. Comparison of change-point models and forecasting Perreault, L.;Bernier, J.;Bobe, B;Parent, E. https://doi.org/10.1016/S0022-1694(00)00271-7
  13. Biometrika v.62 A Bayesian approach to inference about a change-point in a sequence of random variables Smith, A. F. M. https://doi.org/10.1093/biomet/62.2.407
  14. MATLAB/Statistics Toolbox, Version 5.3 The MATH WORKS Inc.