DOI QR코드

DOI QR Code

Deformation and Failure Analysis of Heterogeneous Microstructures of Ti-6Al-4V Alloy using Probability Functions

확률함수를 이용한 비균질 Ti-6Al-4V 합금의 변형 및 파손해석

  • Published : 2004.06.01

Abstract

A stochastic approach has been presented for superplastic deformation of Ti-6Al-4V alloy, and probability functions are used to model the heterogeneous phase distributions. The experimentally observed spatial correlation functions are developed, and microstructural evolutions together with superplastic deformation behavior have been investigated by means of the two-point and three-point probability functions. The results have shown that the probability varies approximately linearly with separation distance, and deformation enhanced probability changes during the process. The stress-strain behavior with the evolutions of probability function can be correctly predicted by the model. The finite element implementation using Monte Carlo simulation associated with reconstructed microstructures shows that better agreement with experimental data of failure strain on the test specimen.

Keywords

Failure Analysis;Probability Function;Heterogeneous Microstructure;Monte Carlo Simulation

References

  1. Gosh, A.K. and Hamilton, C.H., 1979, 'Mechanical Behavior and Hardening Characteristics of a Superplastic Ti-6Al-4V Alloy,' Met. Trans. A., Vol.10A, pp.699-706 https://doi.org/10.1007/BF02658391
  2. Nieh, T.G., Wadsworth, J. and Sherby, O.D., 1997, 'Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, pp. 32-49
  3. Lemaitre, L. and Chaboche, J-L., 1990, Mechanics of Solid Materials, Cambridge University Press, Cambridge, pp. 176-235
  4. Baudelet, B. and Suery, M., 1998, 'Plastic stability and Strain to Fracture during Superplastic Deformation,' Superplasticity and Superplasic Forming(Ed. C.H. Hamilton, N.E. Paton), Proc. Int. Conf., Washington, USA, pp. 135-148
  5. Majorell, A., Srivasta, S. and Picu, R.C., 2002, 'Mechanical Behavior of Ti-6Al-4V at High and Moderate Temperatures-Part I: Experimental Results,' Mater. Sci. Eng. A, Vol. 326, pp. 306-316 https://doi.org/10.1016/S0921-5093(01)01507-6
  6. Haldar, A. and Mahadevan, S., 2000, Probability, Reliability and Statistical Methods in Engineering Design, John Wiley & Sons, New York, pp. 114-117
  7. Kim, T.W., 2001, 'Heterogeneous Microstructure of Ti-6Al-4V and its Effect on Superplastic Deformation,' Scripta Mater., Vol. 45, pp. 923-929 https://doi.org/10.1016/S1359-6462(01)01113-7
  8. Lin, S., Garmestani, H. and Adams, B., 2000, 'Statistical Evolution of Probability Functions in an Inelasticly Deforming Two-Phase Medium,' Int. J. Solids. Struct., 37, pp. 423-434 https://doi.org/10.1016/S0020-7683(99)00013-X
  9. Lin, S. and Garmestani, H., 2000, 'Statistical Continuum Mechanics Aanalysis of an Eelastic Two-Isotropic-Phase Composite Material,' Comps. Part B, Vol. 31, pp. 39-46 https://doi.org/10.1016/S1359-8368(99)00050-5
  10. Kroner, E., 1971, Statistical Continuum Mechanics, Wien, New York, pp. 21-31
  11. Torquato, S. and Sheehan, N., 2001, 'Generating Microstructures with Specified Correlation Function,' J. Appl. Phys., Vol. 89, No. 1, pp. 53-60 https://doi.org/10.1063/1.1327609
  12. Saito, Y., 1997, 'The Monte Carlo Simulation of Microstructural Evoluation in Metal,' Mater. Sci. Eng. A, 233, pp.114-124 https://doi.org/10.1016/S0921-5093(97)80019-6
  13. Lee, H.N., Ryoo, H.S. and Hwang, S.K., 2000, 'Monte Carlo Simulation of Microstructure Evolution Based on Grain Boundary Character Distribution,' Mater. Sci. Eng. A, 281, pp. 176-188 https://doi.org/10.1016/S0921-5093(99)00725-X
  14. Hoon-Chul Yang and Ki-Tae Kim, 'Densification Behavior of Ti-6Al-4V Powder Compacts by Hot Isostatic Pressing,' Trans. of the KSME A, Vol. 24, No. 2, pp. 394-402
  15. Shi, L. and Northwood, D.O., 1995, 'Grain Size Effect Evolution in High Temperature Creep and Superplastic Deformation of Polycrystalline Materials,' Mater. Sci. Forum, Vol. 189, pp. 335-340 https://doi.org/10.4028/www.scientific.net/MSF.189-190.335
  16. Gosh, A.K. and Raj, R., 1986, 'A Model for the Evoluation of Grain Size Distribution During Superplastic Deformation,' Acta. Met. Mater., Vol 34, No. 3, pp. 447-456 https://doi.org/10.1016/0001-6160(86)90080-5
  17. Zhang, X.Z. and Knott, J.F., 2000, 'The Statistical Modelling of Brittle Fracture in Homogeneous and Heterogeneous Steel Microstructures,' Acta Mater., Vol. 48, pp. 2135-2146 https://doi.org/10.1016/S1359-6454(00)00055-0
  18. Todinov, M.T., 2001, 'Statistical Modelling the Scatter of Properties from Sampling of Inhomogeneous Materials,' Com. Mater. Sci., Vol. 21, pp. 436-451 https://doi.org/10.1016/S0927-0256(01)00180-X
  19. Corson, P.B., 1974, 'Correlation Functions for Predicting Properties of Heterogeneous Mateials II. Emprical Construction of Spatial Correlation Functions for Two-Phase Solids,' J. Appl. Phys., Vol. 45, No. 7, pp. 3165-3170 https://doi.org/10.1063/1.1663742
  20. Corson, P.B., 1974, 'Correlation Functions for Predicting Properties of Heterogeneous Materials III. Effective Elastic Moduli of Two-Phase solids,' J. Appl. Phys., Vol. 45, No. 7, pp. 3171-3179 https://doi.org/10.1063/1.1663743
  21. Johnson, R. H., 1970, 'Superplasticity,' Met. Rev. 15 pp. 115-134 https://doi.org/10.1179/imr.1970.15.1.115
  22. Winkler, P-J., 1990, Superplasticity in use: A Critical Review of its Status,Trends and Limits, Superplasticity in Metals, Ceramics and Intermetallic Symp., California, USA, pp. 123-126
  23. Zhou, M. and Duune, F.P.E., 1996, 'Mechanisms-based Constitutive Equations for the Superplastic Behavior of a Titanium Alloy,' J. of strain Analysis, Vol.31, pp.65-73 https://doi.org/10.1243/03093247V313187
  24. Kim, T.W. and Dunne, F.P.E., 1999, 'Inhomogeneous Deformation and Failure in Superplasticity,' Proc. R. Soc. Land. Vol. 455, pp. 719-735 https://doi.org/10.1098/rspa.1999.0331
  25. Cheong, B.H., Lin, J. and Ball, A.A., 2003, 'Modelling the Effects of Grain-size Gradients on Necking in Superplastic Forming,' J. Mater. Pro. Technol., Vol. 119, pp. 316-365
  26. Jae Do Kwon, Yong Tak Bae and Sung Jong Choi, 'The Evaluation of Mechanical Properties on the Changes of Microstructure for Titanium Alloy(Ti-6Al-4V),' Trans. of the KSME, A, Vol. 26, No. 4, pp. 609-616