Characterization and Food Application of a Potentiometric Biosensor Measuring $\beta$-Lactam Antibiotics

  • Published : 2004.08.01

Abstract

$\beta$-Lactam antibiotics such as penicillin G, amoxicillin, and ampicillin were determined by a potentiometric biosensor system which exploited penicillinase immobilized on Immobilon cellulose nitrate membrane and a flat-bottomed pH electrode-as the biological component and transducer. The optimum reaction buffer for maximum sensitivity was found as 2 mM of sodium phosphate buffer (pH 7.2). The detection limit of the biosensor could be extended to 1 $\mu{M}$ of the analytes by increasing the enzyme loading for immobilization to 100 units/$m\ell$. The model samples spiked with each of the standard penicillins were measured for their biosensor responses and HPLC peak area, resulting in the relative responses of 82.1-103.5% and 79.5-106.1% for the biosensor method along with HPLC analysis, respectively. This result showed a good precision of the current biosensor method for screening the penicillin compounds.

References

  1. Anal. Chem. v.46 Improved penicillin selective enzyme electrode Cullen, L. F.;J. F. Rusling;A. Schleifer;G. J. Papariello https://doi.org/10.1021/ac60349a007
  2. Biosens. Bioelectron. v.16 Investigation of highly sensitive piezoelectric immunosensors for 2,4-dichlorophenoxyacetic acid Halamek, J.;M. Hepel;P. Skladal https://doi.org/10.1016/S0956-5663(01)00132-4
  3. Biosens. Bioelectron. v.13 Separation-free electrochemical immunosensor for rapid determination of atrazine Keay, R. W.;C. J. McNeil https://doi.org/10.1016/S0956-5663(98)00008-6
  4. Biosens. Bioelectron. v.7 Penicillinase optodes: Substrate determinations using batch, continuous flow and flow injection analysis operation conditions Hobel, W.;A. Papperger;J. Polster https://doi.org/10.1016/0956-5663(92)85006-V
  5. J. AOAC Intl. v.77 Confirmation of chloramphenicol residues in bovine milk by gas chromatography/mass spectrometry Kijk, P. J.
  6. J. Food Sci. v.61 Characterization and food application of an amperometric needle-type L-lactate sensor Kim. N.;R. Haginoya;I. Karube https://doi.org/10.1111/j.1365-2621.1996.tb14177.x
  7. Food Agric. Immunol. v.12 Competitive ELISA of chloramphenicol: Influence of immunoreagent structure and application of the method for the inspection of food of animal origin Kolosova, A. Y.;J. V. Samsonova;A. M. Egorov https://doi.org/10.1080/095401000404067
  8. KFDA Notice 2000-18 Test methods for residual compounds in the meat-processed foods Korea Food and Drug Administration
  9. J. Food Prot. v.59 Comparisons of biosensor, microbiological, immunochemical, and physical methods for detection of sulfamethazine residues in raw milk Mellgren, C.;A. Sternesjo;P. Hammer;G. Suhren;L. Bjorck;W. Heeschen https://doi.org/10.4315/0362-028X-59.11.1223
  10. MAF Notice 2001-5 Indication of residual analysis in meats Ministry of Agriculture and Fisheries
  11. J. AOAC Intl. v.85 Liquid chromatographic determination of multiple sulfonamides, nitrofurans and chloramphenicol residues in pasteurized milk Norma, P.;G. Rey;N. Mario;D. Gilberto;L. Hectot;E. Irma;M. Zenaida
  12. Biosens. Bioelectron. v.11 Chemiluminescent immunoenzyme biosensor with a thinlayer flow-through cell; Application for study of a real-time biomolecular antigen-antibody interaction Osipov, A. P.;N. V. Zaitseva:A. M. Egorov https://doi.org/10.1016/0956-5663(96)89437-1
  13. Anal. Chem. v.68 Electrochemiluminescence-based detection of ${\beta}$-lactam antibiotics and ${\beta}$-lactamases Pam, L.;L. S. Rosa;T. M. Mark https://doi.org/10.1021/ac951072p
  14. Biosens. Bioelectron. v.19 Development of a chloramphenicol sensor based on thiol or sulfide mediated self-assembled antibody monolayers Park, I. S.;D. K. Kim;N. Adanyi;M. Varadi;N. Kim https://doi.org/10.1016/S0956-5663(03)00268-9
  15. Food Sci. Biotechnol. v.11 Characteristics of FIA-type hypoxanthine sensors prepared by some immobilization methods Park, I.-S.;N. Kim;B.-S. Noh;B.-D. Choi
  16. J. Microbiol. Biotechnol. v.12 Detection of aromatic pollutants by bacterial biosensors bearing gene fusions constructed with the dnaK promoter of Pseudomonas sp. DJ-12 Park, S.-H.;D.-H. Lee;K.-H. Oh;K. Lee;C.-K. Kim
  17. Sens. Actuat. B v.68 Cross-sensitivity of a capacitive penicillin sensor combined with a diffusion barrier Poghossian, A.;M. Thust;M. J. Schoning;M. Muller-Veggian;P. Kordos;H. Luth https://doi.org/10.1016/S0925-4005(00)00442-1
  18. Sens. Mater. v.13 Penicillin detection by means of silicon-based field-effect structures Poghossian, A.;M. Thust;P. Schroth;A. Steffen;H. Luth;M. J. Schoning
  19. Anal. Chem. v.48 Immobilized enzyme-based flowing-stream analyzer for measurement of penicillin in fermentation broths Rusling, J .F.;G. H. Luttrell;L. F. Cullen;G. J. Papariello https://doi.org/10.1021/ac50002a038
  20. Proc. Eurosensors X v.3 A novel silicon-based pH sensor prepared by pulsed laser deposition technique Schoning, M. J.;L. Beckers;A. Schaub;W. Zander;J. Schubert;S. Mesters;P. Kordos;H. Luth;R. Puers(ed.)
  21. Sens. Actuat. B v.35 A highly long-term stable silicon-based pH sensor using pulsed laser deposition technique Schoning, M. J.;D. Tsarouchas;A. Schaub;L. Beckers;W. Zander;J. Schubert;P. Kordos;H. Luth https://doi.org/10.1016/S0925-4005(97)80060-3
  22. Biosens. Bioelectron. v.12 Construction and characterization of the direct piezoelectric immunosensor for atrazine operating in solution Steegborn, C.;P. Skladal https://doi.org/10.1016/0956-5663(96)89086-5
  23. Technical Library of Supelco, Chromatograms/Analytical Techniques/Liquid Chromatography/Chloramphenicol Supelco
  24. Anal. Chim. Acta v.323 A long-term stable penicillin-sensitive potentiometic biosensor with enzyme immobilized by heterobifunctional crosslinking Thust, M.;M. J. Schoning;J. Vetter;P. Kordos;H. Luth https://doi.org/10.1016/0003-2670(95)00619-2
  25. J. Mol. Recog. v.9 Biosensors in flow-injection systems for biomedical analysis, process and envirnmental monitoring Tran-Minh, C. https://doi.org/10.1002/(SICI)1099-1352(199634/12)9:5/6<658::AID-JMR317>3.0.CO;2-M
  26. J. Pharm. Biomed. Anal. v.8 Determination of penicillin in pharmaceutical formulations by flow injection analysis using an optimised immobilized penicillinase reactor and iodometric detection Van Opstal, M. A. J.;R. Wolster;J. S. Blauw;P. C. Van Krimpen;W. P. Van Bennekom;A. Bult https://doi.org/10.1016/0731-7085(90)80006-B
  27. J. Microbiol. Biotechnol. v.13 Ion-sensitive field effect transistor-based multi-enzyme sensor for alternative detection of mercury ions, cyanide and pesticide Volotovskky, V.;N. Kim
  28. Chemistry of ${\beta}$-Lactams Waley, S. G.
  29. J. Chromatogr. v.566 Analysis of chloramphenicol residues in swine tissues and milk: Comparative study using different screening and quantitative methods Water, C. V.;N.Haagsma https://doi.org/10.1016/0378-4347(91)80122-S
  30. Biotechnol. Bioeng. v.39 A fluorescence-based fiber optic biosensor for the flowinjection analysis of penicillin Xie, X.;A. A. Suleiman;G. G. Guilbault https://doi.org/10.1002/bit.260391111