DOI QR코드

DOI QR Code

OSCILLATION THEOREMS OF SOLUTIONS FOR SOME DIFFERENTIAL EQUATIONS

Kim, Rak-Joong

  • 발행 : 2004.07.01

초록

Some oscillation criteria are given for second order nonlinear differential equations by means of integral averaging technique.

키워드

oscillation;delay equation;half-linear equation

참고문헌

  1. A. Elbert, Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations in \Ordinary and Partial Differential Equations." Lecture Notes in Mathematics., vol. 964, Springer-Verlag, New York /Berlin, 1982, pp. 187-212. https://doi.org/10.1007/BFb0064999
  2. J. of Math. Anal. Appl. v.190 pp.821-828 Oscillation of second order differential equation with mixed argument J. Dzurina https://doi.org/10.1006/jmaa.1995.1114
  3. Colloq. Math. Soc. Janos Bolyai. v.30 pp.153-180 A half-linear second order differential equation. in "Qualitative Theory of Differential Equations." A. Elbert https://doi.org/10.1006/jmaa.1995.1114
  4. Lecture Notes in Mathematics. v.964 pp.187-212 Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations in "Ordinary and Partial Differential Equations." A. Elbert https://doi.org/10.1007/BFb0064999
  5. Acta Math. Hungar. v.56 pp.325-336 Oscillation and nonoscillation theorems for a class of second order quasilinear differential equations A. Elbert;T. Kusano https://doi.org/10.1007/BF01903849
  6. Canad. Math. Bull. v.16 pp.49-56 Oscillation criteria for second order nonlinear delay equations L. Erbe https://doi.org/10.1007/BF01903849
  7. Proc. Amer. Math. Soc. v.26 pp.78-84 Nonoscillation theorems for a nonlinear differential equation H. E. Gollwitzer
  8. Proc. Amer. Math. Soc. v.22 pp.485-488 A nonoscillation theorem for a nonlinear second order differential equation J. W. Heidel https://doi.org/10.2307/2036807
  9. Proc. Amer. Math. Soc. v.87 pp.467-474 Nonoscillation theorems for a sublinear ordinary differential equation M. K. Kong;J. S. W. Wong https://doi.org/10.2307/2043634
  10. Arch. Math. v.53 pp.483-492 Oscillation theorems for linear differential equations Ch. G. Philos https://doi.org/10.2307/2043634
  11. J. Math. Anal. Appl. v.215 pp.334-357 Oscillation Criteria for certain nonlinear differential equations Y. V. Rogovchenko https://doi.org/10.1006/jmaa.1997.5595
  12. J. Math. Anal. Appl. v.229 pp.399-416 Oscillation Criteria for certain nonlinear differential equations Y. V. Rogovchenko https://doi.org/10.1006/jmaa.1998.6148
  13. J. Math. Anal. Appl. v.189 pp.115-127 Nonoscillation theorems for a class of quasilinear differential equations of second order K. Takasi https://doi.org/10.1006/jmaa.1995.1007
  14. Quart. Appl. Math. v.7 pp.115-117 A criterion of oscillatory stability A. Winter https://doi.org/10.1006/jmaa.1995.1007
  15. J. Math. Anal. Appl. v.258 pp.244-257 On Kamenev-Type Oscillation Theorems for Second-Order Differential Equations with Damping J. S. W. Wong https://doi.org/10.1006/jmaa.2000.7376
  16. Houston J. Math. v.17 pp.63-70 Generalizing Hartman's oscillation result for (|x'(t)|$^{p-2}$x'(t)' + c(t)|x(t)|$^{p-2}$x = 0,p > 1 M. Del Pino;M. Elgueta;R. Manasevich https://doi.org/10.1006/jmaa.2000.7376