DOI QR코드

DOI QR Code

ON INFINITE CLASSES OF GENUS TWO 1-BRIDGE KNOTS

Kim, Soo-Hwan;Kim, Yang-Kok

  • Published : 2004.07.01

Abstract

We study a family of 2-bridge knots with 2-tangles in the 3-sphere admitting a genus two 1-bridge splitting. We also observe a geometric relation between (g - 1, 1)-splitting and (g,0)- splitting for g = 2,3. Moreover we construct a family of closed orientable 3-manifolds which are n-fold cyclic coverings of the 3-sphere branched over those 2-bridge knots.

Keywords

Heegaard Diagram;(2,1)-decomposition;covering space

References

  1. Topology Appl. v.38 The knots in D$^2 {\times} S^1$ with non-trivial Dehn surgery yielding D$^2 {\times} D^1$ J. Berge https://doi.org/10.1016/0166-8641(91)90037-M
  2. Topology v.28 Surgery on knots in solid tori D. Gabai https://doi.org/10.1016/0040-9383(89)90028-1
  3. Topology Appl. v.37 1-bridge braids in solid tori D. Gabai https://doi.org/10.1016/0166-8641(90)90021-S
  4. Kobe J. Math. Genus two Heegaard splittings of exteriors of knots and the disjoint curve property H. Goda;C. Hayashi;N. Yoshida
  5. Topology v.90;1 The arithmeticity of the figure eight knot orbifolds H. M. Hilden;M. T. Lozano;J. M. Montesinos-Amilibia;Apanasov, W. D. Neumann(ed.);A. W. Reid(ed.);L. Siebenmann(ed.);Walter de Gruyter(ed.)
  6. Geom. Topol. Monogr. v.2 Classification of unknotting tunnels for two bridge knots T. Kobayashi
  7. Geom. Topol. v.5 Heegaard splittings of exteriors of two bridge knots T. Kobayashi https://doi.org/10.2140/gt.2001.5.609
  8. Topology v.32 Incompressibility of surfaces in surgered 3-manifold Y-Q. Wu
  9. Math. Ann. v.295 ${\partial}$-reducing Dehn surgeries and 1-bridge knots Y-Q. Wu
  10. Math. Proc. Cambridge Philos. Soc. v.120 Incompressible surfaces and Dehn surgery on 1-bridge knots in handlebodies Y-Q. Wu https://doi.org/10.1017/S030500410000164X