DOI QR코드

DOI QR Code

EULER SUMS EVALUATABLE FROM INTEGRALS

  • Published : 2004.07.01

Abstract

Ever since the time of Euler, the so-called Euler sums have been evaluated in many different ways. We give here a proof of the classical Euler sum by following Lewin's method. We also consider some related formulas involving Euler sums, which are evaluatable from some known definite integrals.

Keywords

Euler sums;Gamma function;(generalized) harmonic numbers;Psi function;Polygamma function;Riemann Zeta function;Hurwitz Zeta function;Polylogarithm function

References

  1. Analysis v.18 Some series of the Zeta and related functions V. S. Adamchik;H. M. Srivastava
  2. Experiment. Math. v.3 Experimental evaluation of Euler sums D. H. Bailey;J. M. Borwein;R. Girgensohn https://doi.org/10.1080/10586458.1994.10504573
  3. Ramanujan J. v.4 A new method for investigating Euler sums A. Basu;T. M. Apostol https://doi.org/10.1023/A:1009868016412
  4. Ramanujan's Notebooks B. C. Berndt
  5. Proc. Amer. Math. Soc. v.123 On an intriguing integral and some series related to ${\zeta}$ (4) D. Borwein;J. M. Borwein https://doi.org/10.2307/2160718
  6. Proc. Edinburgh Math. Soc. (Ser. 2) v.38 Explicit evalution of Eulersums D. Borwein;J. M. Borwein;R. Girgensohn https://doi.org/10.1017/S0013091500019088
  7. Electron. J. Combin. Research Paper 23 v.3 no.1 Evaluation of triple Euler sums J. M. Borwein;R. Girgensohn
  8. Amer. Math. Monthly v.108 Euler's formula for Zeta function convolutions P. Bracken
  9. Experiment. Math. v.3 On the evaluation of Euler sums R. E. Crandall;J. P. Buhler https://doi.org/10.1080/10586458.1994.10504297
  10. J. Comput. Appl. Math. v.37 On some series containing ${\psi}$(x)-${\psi}$(y) and (${\psi}$(x)-${\psi}$(y))$^2$ for certain values of x and y P. J. de Doelder https://doi.org/10.1016/0377-0427(91)90112-W
  11. Experiment. Math. v.7 Euler sums and contour integral representations P. Flajolet;B. Salvy https://doi.org/10.1080/10586458.1998.10504356
  12. Pacific J. Math. v.152 Multiple harmonic series M. E. Hoffman https://doi.org/10.2140/pjm.1992.152.275
  13. Polylogarithms and Associated Functions L. Lewin
  14. J. Number Theory v.48 Triple sums and the Riemann Zeta function C. Markett https://doi.org/10.1006/jnth.1994.1058
  15. Die Gammafunktion N. Nielsen
  16. Problems and Theorems in Analysis v.I G. Polya;G. Szego
  17. Appl. Math. Comput. v.131 Some classes of infinite series associated with the Riemann Zeta and Polygamma functions and generalized harmonic numbers Th. M. Rassias;H. M. Srivastava https://doi.org/10.1016/S0096-3003(01)00172-2
  18. Trans. Amer. Math. Soc. v.347 Remarks on some integrals and series involving the Stirling numbers and ${\zeta}$ (n) L.-C. Shen https://doi.org/10.2307/2154819
  19. J. Number Theory v.25 A formula of S. Ramanujan R. Sitaramachandrarao https://doi.org/10.1016/0022-314X(87)90012-6
  20. Indian J. Pure Appl. Math. v.10 Some identities involving the Riemann Zeta function R. Sitaramachandrarao;A. Sivaramsarma
  21. Indian J. Pure Appl. Math. v.11 Two identities due to Ramanujan R. Sitaramachandrarao;A. Sivaramsarma
  22. Pacific J. Math. v.113 Transformation formulae for multiple series R. Sitaramachandrarao;M. V. Subbarao https://doi.org/10.2140/pjm.1984.113.471
  23. Series Associated with the Zeta and Related Functions H. M. Srivastava;J. Choi
  24. A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions E. T. Whittaker;G. N. Watson
  25. Amer. Math. Monthly v.60 A new method of evaluating ${\zeta}$(2n) G. T. Williams https://doi.org/10.2307/2306473
  26. First European Congress of Mathematics (Paris, 1992);Progr. Math. v.II;120 Values of Zeta functions and their applications D. Zagier;A. Joseph(ed.);F. Mignot(ed.);F. Murat(ed.);B. Prum(ed.);R. Rentschler(ed.)

Cited by

  1. The representation of Euler sums with parameters pp.1476-8291, 2018, https://doi.org/10.1080/10652469.2018.1536128