DC and RF Characteristics of AlGaN/InGaN HEMTs Grown by Plasma-Assisted MBE

AlGaN/InGaN HEMTs의 고성능 초고주파 전류 특성

  • 이종욱 (경희대학교 전파통신공학과)
  • Published : 2004.08.01


This paper reports on the DC and RF characteristics of AlGaN/InGaN/GaN high electron-mobility transistors (HEMTs) grown by molecular beau epitaxy(MBE) on sapphire substrates. The devices with a 0.5 ${\mu}$m gate-length exhibited relatively flat transconductance(g$\_$m/), which results from the enhanced carrier confinement of the InGaN channel. The maximum drain current was 880 mA/mm with a peak g$\_$m/ of 156 mS/mm, an f$\_$T/ of 17.3 GHz, and an f$\_$MAX/ or 28.7 GHz. In addition to promising DC and RF results, pulsed I-V and current-switching measurements showed little dispersion in the unpassivated AlGaN/InGaN HEMTs. These results suggest that the addition of In to the GaN channel improves the electron transport characteristics as well as suppressing current collapse that is related to the surface trap states.


GaN;InGaN;Molecular Beam Expitaxy(MBE);HEMTs


  1. IEEE Trans. Electron Devices v.48 Undoped AlGaN/GaN HEMTs for microwave power amplification L. F. Eastman;V. Tilak;J. Smart;B. M. Green;E. M. Chumbes;R. Dimitrov;H. Kim;O. S. Ambacher;N. Weimann;T. Prunty;M. Murphy;W. J. Schaff;J. R. Shealy https://doi.org/10.1109/16.906439
  2. IEEE Electron Device Lett. v.20 no.9 Evaluation of the temperature stability of AlGaN/GaN heterostructure FETs I. Daumiller;C. Kirchner;M. Kamp;K. J. Ebeling;E. Kohn https://doi.org/10.1109/55.784448
  3. IEDM Tech. Dig. A 110-W AlGaN/GaN heterojunction FET on thinned sapphire substrate Y. Ando;Y. Okamoto;H. Miyamoto;N. Hayama;T. Nakayama;K. Kasahara;M. Kuzuhara
  4. IEEE MTT-S Int. Microwave Symp. Workshop Note A high power and high efficiency GaN HEMT amplifier for W-CDMA base station applications N. Adachi;N. Hara;K. Joshin;M. Kanamura;T. Kikkawa;M. Nishi;M. Tanaka;Y. Tateno;S. Yokokawa;M. Yokoyama
  5. J. Appl. Phys. v.86 GaN: processing, defects, and devices S. J. Pearton;J. C. Zolper;R. J. Shul;F. Ren
  6. IEEE Electron Device Lett. v.25 no.3 30-W/mm GaN HEMTs by field plate optimization Y. -F. Wu;A. Saxler;M. Moore;R. P. Smith;S. Sheppard;P. M. Chavarkar;T. Wisleder;U. K. Mishra;P. Parikh https://doi.org/10.1109/LED.2003.822667
  7. IEEE Microwave Wireless Compon. Lett. v.13 no.3 Millimeter-wave high-power 0.25-${\mu}m$ gate-length AlGaN/GaN HEMTs on SiC substrates R. S. Schwindt;V. Kumar;A. Kuliev;G. Simin;J. W. Yang;M. A. Khan;M. E. Muir;I. Adesida https://doi.org/10.1109/LMWC.2003.810115
  8. IEEE Electron Device Lett. v.24 no.10 AlGaN/GaN HEMTs on SiC with CW power performance of>4 W/mm and 23% PAE at 35 GHz C. Lee;P. Saunier;J. Yang;M. A. Khan https://doi.org/10.1109/LED.2003.817383
  9. IEEE Trans. Electron Devices v.48 The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs R. Vetury;N. Q. Zhang;S. Keller;U. K. Mishra https://doi.org/10.1109/16.906451
  10. J. Appl. Phys. v.85 no.6 Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures O. Ambacher;J. Smart;J. R. Shealy;N. G. Wiemann;K. Chu;M. Murphy;W. J. Schaff;L. F. Eastman;R. Dimitrov;L. Wittmer;M. Stutzman;W. Rieger;J. Hilsenbeck https://doi.org/10.1063/1.369664
  11. IEEE Electron Device Lett. v.21 The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs B. M. Green(et al.) https://doi.org/10.1109/55.843146
  12. IEEE Electron Device Lett. v.24 Unpassivated AlGaN-GaN HEMTs with minimal RF dispersion grown by plasma-assisted MBE on semi-insulating 6H-SiC substrates N. G. Weimann;M. J. Manfra;T. Wachtler https://doi.org/10.1109/LED.2002.807693
  13. IEEE Electron Device Lett. v.25 no.1 High-power polarization engineered GaN/AlGaN/GaN HEMTs without surface passivation L. Shen;R. Coffie;D. Buttari;S. Heikman;A. Chakraborty;A. Chini;S. Keller;S. P. DenBaars;U. K. Mishra https://doi.org/10.1109/LED.2003.821673
  14. Jpn. J. Appl. Phys. v.38 no.7B Enhanced electron mobility in AlGaN/InGaN/AlGaN double-heterostructures by piezoelectric effect N. Maeda;T. Saitoh;K. Tsubaki;T. Nishida;N. Kobayashi https://doi.org/10.1143/JJAP.38.L799
  15. Jpn. J. Appl. Phys. v.40 no.11A AlGaN/InGaN/GaN double heterostructure field effect transistor G. Simin;X. Hu;A. Tarakji;J. Zhang;A. Koudymov;S. Saygi;J. Yang;A. Khan;M. S. Shur;R. Gaska https://doi.org/10.1143/JJAP.40.L1142
  16. IEEE Electron Device Lett. v.22 no.11 Device characteristics of the GaN/InGaN-doped channel HFETs Y. -M. Hsin;H. -T. Hsu;C. -C. Cho;J. -I. Chyi https://doi.org/10.1109/55.962643
  17. IEEE Electron Device Lett. v.22 no.11 Power electronics on InAlN/(In)GaN:Prospect for a record performance J. Kuzmik https://doi.org/10.1109/55.962646
  18. Electron. Lett. v.39 no.22 High performance 0.25 ${\mu}m$ gate-length AlGaN/GaN HEMTs on 6H-SiC with power density of 6.7 W/mm at 18 GHz V. Kumar;J. -W. Lee;A. Kuliev;O. Aktas;R. Schwindt;R. Birkhahn;D. Gotthold;S. Guo;B. Albert;I. Adesida https://doi.org/10.1049/el:20030985
  19. IEEE Trans. Electron Devices v.48 no.3 Trapping effects and microwave power performance in AlGaN/GaN HEMTs S. C. Binari;K. Ikossi;J. A. Roussos;W. Kruppa;D. Park;H. B. Dietrich;D. D. Koleske;A. E. Wickenden;R. L. Henry https://doi.org/10.1109/16.906437
  20. DIVA User Manual Accent Optical Technologies, Inc.
  21. IEDM Tech. Dig. Experimental/numerical investigation on current collapse in AlGaN/GaN HEMTs G. Verzellesi;R. Pierobon;F. Rampazzo;G. Meneghesso;A. Chini;U. K. Mishra;C. Canali;E. Zanoni
  22. IEEE MTT-S Int. Microwave Symp. Digest. v.3 AlGaN/GaN HFET amplifier performance and limitations R. J. Trew
  23. IEEE Electron Device Lett. v.25 Power and linearity characteristics of field-plated recessed-gate AlGaN-GaN HEMTs A. Chini;D. Buttari;R. Coffie;L. Shen;S. Heikman;A. Chakraborty;S. Keller;U. K. Mishra https://doi.org/10.1109/LED.2004.826525
  24. IEEE Trans. Electron Devices v.51 no.2 Performance of the AlGaN HEMT structure with a gate extension R. Thompson;T. Prunty;V. Kaper;J. R. Shealy https://doi.org/10.1109/TED.2003.822036