• Im, Bok-Hee ;
  • Oh, In-Sook
  • Published : 2004.08.01


We introduce certain local Thomsen condition in a 3-web and prove that it is equivalent to the equation a-(a-b)=b in its corresponding loop, where we denote the loop operation additively for convenience and simplicity, even though the loop is neither associative nor commutative. Also we interpret such local Thomsen condition using orthogonality of chains in a web.


web;loop;chain reflection;Thomsen condition;local Thomsen condition


  1. W. Blaschke and G. Bol, Geometrie der Gewebe, Springer-Verlag, Berlin, 1938
  2. G. Bol, Gewebe und Gruppen, Math. Ann. 114 (1937), 414–431
  3. R. H. Bruck, A survey of binary systems, Springer-Verlag, Berlin-Heidelberg-NewYork, 1966
  4. A. Barlotti and K. Strambach, The geometry of binary systems, Adv. Math. 49(1983), 1–05
  5. A. Barlotti, The geometry of double loops, Adv. Math. 72 (1988), 1–58
  6. O. Chein, H. O. Pflugfelder and J. D. H. Smith, Quasigroups and Loops, Theory and Applications, Heldermann-Verlag, Berlin, 1990
  7. M. Funk and P. T. Nagy, On collineation groups generated by Bol reflections, J. Geom. 48 (1993), 63–78
  8. E. Gabrieli, B. Im and H. Karzel, Webs related to K-loops and reflection structures, Abh. Math. Sem. Univ. Hamburg 69 (1999), 89–102
  9. B. Im, H. Karzel and H.-J. Ko, Webs with rotation and reflection properties and their relations with certain loops, Abh. Math. Sem. Univ. Hamburg 72 (2002), 9–20
  10. B. Im and H. Karzel, Determination of the automorphism group of a hyperbolic K-loop, J. Geom. 49 (1994), 96–05
  11. B. Im and H.-J. Ko, Web Loops and Webs with Reflections, J. Geom. 61 (1998), 62–73
  12. H. Karzel, Recent developments on absolute geometries and algebraization by K-loops, Discrete Math. 208/209 (1999), 387–409
  13. H. Kiechle, Theory of K-loops, Lecture Notes in Math. 1778, Springer-Verlag, Berlin, 2002
  14. H. Karzel and H. J. Kroll, Geschichte der Geometrie seit Hilbert, Wiss. Buchge-sellschaft, Darmstadt, 1988
  15. A. Kreuzer, Inner mappings of Bruck loops, Math. Proc. Cambridge Philos. Soc. 123 (1998), 53–7
  16. H. Karzel and H. Wefelscheid, Groups with an involutory antiautomorphism and K-loops: Application to space-time-world and hyberbolic geometry I, Results Math. 23 (1993), 338–354
  17. P. T. Nagy and K. Strambach, Loops as invariant sections in groups and their geometry, Can. J. Math. 46 (1994), no. 5, 1027–056
  18. G. P. Nagy and P. Vojtˇechovsk´y, Automorphism groups of simple Moufang loops over perfect fields, Math. Proc. Cambridge Philos. Soc. 135 (2003), no. 1, 193-197
  19. H. O. Pflugfelder, Quasigroups and Loops: Introduction, Heldermann-Verlag, Berlin, 1990
  20. K. Reidemeister, Topolgische Fragen der Differentialgeometrie. V. Gewebe und Gruppen, Math. Z. 29 (1929), 427–35
  21. K. Reidemeister, Grundlagen der Geometrie, Springer-Verlag, Berlin-Heidelberg-NewYork, 1930
  22. G. Thomsen, Topologische Fragen der Differentialgeometrie XII. Schnittpunk-ts t$\"{a}$ze in ebenen Geweben, Abh. Math. Sem. Univ. Hamburg 7 (1930), 99–06.