개선된 ELA와 양방향 BMA 기반의 움직임 보상을 이용한
재귀적 디인터레이싱

(A time recursive approach for de-interlacing using improved ELA and motion compensation based on bi-directional BMA)

변승찬*, 변정문*, 김경환**

(Seung-Chan Byun, Jeong-Moon Byun, and Gyeonghwan Kim)

요 약

본 논문에서는 공간정보(spatial information)를 이용하는 개선된 ELA(edge based line average) 방법과 시간정보(temporal information)를 이용하는 움직임 보상(motion compensation) 방법간의 가중합사를 통하여 비활주사 방식의 영상(interlaced image)을 순차주사 방식의 영상(sequential image)으로 변환하는 알고리즘을 제안한다. 이 때, 움직임 보상은 하드웨어 구현
이 용이한 양방향 BMA(block matching algorithm)에 의해 이루어진다. 보다 높은 성능과 효율성을 가지기 위하여 앞선 단계에
서 디인터레이싱 되어진 영상을 사용하는 재귀적 구조의 움직임 검출을 통한 움직임에 적합적인 처리과정을 거쳐게 된다. 또
한, 가중변수를 통하여 선형 결합할 경우 그 결과값은 결합하는 값의 사이의값을 가질 수 있기 때문에 미디언 필터(median filter)를 사용하여 이를 보완한다. 이러한 점부터는 각각의 디인터레이싱 방법의 경우에 따라 다양한 영상조건에서 정확하고 효율적인 디인터레이싱을 가능하게 해주며, 실시간 처리를 위한 하드웨어 구현을 용
이하게 해준다.

Abstract

In this paper, we propose an algorithm for interlaced-to-sequential conversion by the weighted summation of the information collected from spatial de-interlacing method, in which the weighted edge based line average is applied, and the temporal method in which the motion compensation is employed by using bi-directional BMA (block matching algorithm). We employed time-recursive and motion adaptive processing as motion detection is involved. Also, a median filter is used to deal with limitation of the linear summation in which only an intermediate of values being involved is determined. The main goal of the approach is to overcome the shortcomings of each of the de-interlacing techniques without significant increment of the computational complexity, and the proposed method is apt to implement in hardware for real-time processing.

Keywords: de-interlacing, video format conversion, video signal processing, motion compensation

I. 서 론

비활주사 스캔 방식(interlaced scanning format)은 움직임 영역에서의 틀니모양의 왜곡이 발생한다는 단점

* 학생회원, ** 정회원, 서강대학교 전자공학과
 (Department of Electronic Engineering, Soochang University)

※ 이 연구는 2002년도 서강대학교 교내 연구비와 BK21학점사업의 지원에 의하여 이루어졌음
 접수일자: 2004년 5월 11일, 수정완료일: 2004년 6월 11일
에도 불구하고 전송대역폭을 확보할 수 있기 때문에 TV의 디스플레이 시스템으로 널리 사용되었다. 그러
나 PC(personal computer)의 보급과, HDTV(high definition television) 및 프로젝터(projector) 등과 같은 순
차주사 스캔 방식(sequential scanning format)을 사용
하는 장비의 증가에 따라 기존의 비활주사 방식에서 순
차주사 방식으로의 변환이 크게 요구되고 있다. 이러한
비활주사 방식에서 순차주사 방식으로의 변환은 디인터
레이싱(de-interlacing)이라 하며, 움직임 보상 여부에
따라 크게 non-MC(non-motion compensation) 방법과

(635)
MC(motion compensation) 방법으로 구분할 수 있다[1].

Non-MC 방법은 일반적으로 연산량이 적고 구현
이 간단하여 빠른 속도의 디지털레이싱이 가능하며,
조명이나 장면변화가 없는 영상조직 변화에 따른 영
향이 적다. 그러나 물체나 카메라의 이동에 따른 영
상의 변화를 반영하기 어렵기 때문에 이로 인한 움직
임 왜곡(motion artifact) 현상이 나타나는 단점이 존재
한다. MC 방법은 움직임 추정(motion estimation)을 통
하여 해당 비디오 영상의 연속한 필드에서 필요한 정보
을 가져오여 방법이다. 이러한 MC 방법은 움직임 추정
(motion estimation) 결과에 따라 그 성능이 크게 영향
을 받기 때문에 높은 성능의 결과를 얻기 위해서는 정
확한 움직임 추정이 필수적이다. 그러나 일반적으로 정
확한 움직임 추정을 위해서는 매우 높은 계산비용이 요구
되며, 영상 조밀이 높아야 하는 경우 정확한 움직임 추정
에 어려움이 많다. 뿐만 아니라 장면변화이나 급격한
조명 변화와 같이 인접한 프레임 사이의 상관관계가 거
의 없는 경우에는 정확한 움직임 추정이 불가능하기 때
문에 MC 방법만을 사용할 경우 그 효용성이 문제가 된
다.

제안하는 방법은 non-MC 방법과 MC 방법과의 가
중합산을 통해 디지털레이싱을 수행하는 일종의 하이브
리드(hybrid) 방법[2]으로 적합한 가중 변수의 조절과 미
디언 필터를 활용하여 각 방법의 장점을 취하게 된다.
디미언 필터는 non-MC 방법과 MC 방법과의 선형적 결
합을 통해 디지털레이싱을 수행할 경우 non-MC 방
법과 MC 방법에 의해 얻어지는 값들의 차이값을 빠르게
납 수 없는 현상이 발생하기 때문에, 주변값을 반영하
여 이를 극복하기 위해 사용한다. 또한 제안하는 알고
리즘은 움직임 추정을 통해 움직임이 없을 경우
temporal 필터를 사용하는 움직임에 적응적 방법[3,4]
이란 단계에서 디지털레이싱 되어진 영상을 이용한 제

II. 제안하는 알고리즘

제안하는 방법은 그림 1에서 보는 바와 같이 크게 네
단계를 겪는다. 첫 번째 단계에서는 이전 단계에서 디
지털레이싱 되어진 1장의 프레임과 2장의 필드 영상을
입력 받아 움직임 검출을 하게 된다. 두 번째 단계에서
는 입력되어진 두 장의 필드영상과 프레임 영상을 변
환하게 된다. 이 때, 움직임이 없다고 판단되는 영역에
서의 missing line은 필드 평균(field average)을 통해

\[\text{그림 1. 제안하는 알고리즘 블록도} \]

보간(interpolation) 되며, 그렇지 않은 영역에서는 개선
된 ELA (edge based line average)를 통해 보간되는
움직임에 적응적인 방법을 사용한다. 다음 단계에서는
그림 1과 같이 인접한 프레임 사이의 상관관계가 거
의 없는 경우에는 정확한 움직임 추정이 불가능하기 때
문에 MC 방법만을 사용할 경우 그 효용성이 문제가 된
다.

보간(interpolation) 되며, 그렇지 않은 영역에서는 개선
된 ELA (edge based line average)를 통해 보간되는
움직임에 적응적인 방법을 사용한다. 다음 단계에서는
그림 1과 같이 인접한 프레임 사이의 상관관계가 거
의 없는 경우에는 정확한 움직임 추정이 불가능하기 때
문에 MC 방법만을 사용할 경우 그 효용성이 문제가 된
다.

보간(interpolation) 되며, 그렇지 않은 영역에서는 개선
된 ELA (edge based line average)를 통해 보간되는
움직임에 적응적인 방법을 사용한다. 다음 단계에서는
그림 1과 같이 인접한 프레임 사이의 상관관계가 거
의 없는 경우에는 정확한 움직임 추정이 불가능하기 때
문에 MC 방법만을 사용할 경우 그 효용성이 문제가 된
다.

보간(interpolation) 되며, 그렇지 않은 영역에서는 개선
된 ELA (edge based line average)를 통해 보간되는
움직임에 적응적인 방법을 사용한다. 다음 단계에서는
그림 1과 같이 인접한 프레임 사이의 상관관계가 거
의 없는 경우에는 정확한 움직임 추정이 불가능하기 때
문에 MC 방법만을 사용할 경우 그 효용성이 문제가 된
다.
그림 2. 움직임 검출

Fig. 2. Motion detection.

서 보는 바와 같이 두 장의 필드 영상을 필드 삽입(FI) 하여 얻어진 한 장의 프레임 영상을 앞서 디너터레이싱 된 프레임 영상과의 차이가 특정 임계값 이상인 경우 움직임 영역으로 판단한다. 이 때, 3×3 가우시안 마스크를 이용한 가우시안 연산자 G을 사용하여 감소 영역을 줄인다[86]. 단, 초기 프레임의 경우 4장의 필드 영상 을 사용하여 움직임 검출을 한다.

\[
|G \ast F_{\phi(n-1)} - G \ast F_{\phi(n), \phi(n+1)}| > Th
\]

(1)

2. 가중치를 이용한 개선된 ELA.

Non-MC 방법 중 가장 간단한 방법으로 line average가 있다. Line average는 연산량이 적고, 구현이 간단하다는 장점이 있다. 그러나 수직방향에 대한 성분 만을 이용하였기 때문에 대각선 에지(edge) 성분과 같이 수직 방향 외의 에지성분이 강한 경우 효과적인 디너터레이싱이 되지 않는다. 이를 보완한 것이 ELA (edge based line average) 방법으로 에지의 방향성에 따라 missing line을 보완하게 된다[87]. 일반적인 ELA는 그림 3의 (a), (b), (c)와 같이 수직 및 양대각선 방향

\[
\begin{align*}
\text{corr}_1 &= |A1 - C1| \\
\text{corr}_2 &= |B1 - B2| \\
\text{corr}_3 &= |C1 - A2|
\end{align*}
\]

(2)

\[
F_{ELA} = \begin{cases}
\frac{A1 + C2}{2} & \text{if } \min(\text{corr}_1, \text{corr}_2, \text{corr}_3) = \text{corr}_1 \\
\frac{B1 + B2}{2} & \text{if } \min(\text{corr}_1, \text{corr}_2, \text{corr}_3) = \text{corr}_2 \\
\frac{C1 + A2}{2} & \text{otherwise}
\end{cases}
\]

(3)

그림 3. ELA를 위한 에지 패턴

Fig. 3. Edge patterns for ELA.

에 대한 3가지 에지 패턴(edge patterns)을 사용한다. 만약, 그림 3의 (d)에서 F에 해당되는 위치를 보간한다 면, 식 (2)와 같이 F를 중심으로 수직 및 양대각선에 해당하는 3가지 방향에 대해 상관관계를 구하여, 최종적으로 식 (3)에 의해 보간이 이루어진다.

이러한 ELA 방법은 에지 성분이 강한 영역에서 보다 효율적인 디너터레이싱을 가능하게 해주며 실제 대부분의 영상에서 좋은 성능을 보인다. 그러나 실제 에지의 방향을 주어진 에지 패턴만으로 표현할 수 없는 경우가 많기 때문에 잘못된 패턴 방향의 결정으로 영상 품질이 나타날 수 있다. 이러한 문제를 극복하기 위해 다수의 에지 패턴을 사용하여 디너터레이싱을 수행하는 방법들이 소개되었다[88]. 그러나 정확한 에지의 방향을 판단할 명시적인 판단규를 구하기 어렵기 때문에 많은 수의 패턴을 사용할 경우 오히려 실제 에지의 방향과 부합하지 않는 패턴을 선택할 확률이 높다. 따라서 그림 4의 (b)에서 보는 바와 같이 이로 인한 영상 품질이 나타날 수 있다. 그렇기 때문에 본 논문에서는 3개의 패턴만을 사용하여 각 패턴의 가중합을 통해 특정 에지 패턴의
변환된 외

3. 블록기반의 양방향 움직임 추정

MC를 사용한 다이너레이싱 방법으로 매우 다양한 형태의 방법들이 개발되었으며 기본적으로 움직임 추정 성능에 따라 큰 영향을 받게 된다. 움직임 추정은 이미지에서 가장 높은 상관관계를 갖는 페턴이나 영역을 통해 움직임 정보를 얻는 과정을 말한다. 본 논문에서는 가장 널리 사용되는 움직임 추정 방법인 하나인 BMA(block matching algorithm)를 사용하여 움직임 추정을 한다. 일반적으로 정확한 움직임 추정을 위해서는 몇 가지 문제들이 해결되어야하는데, 그 중 aperture 문제와 occlusion 문제를 대표적으로 들 수 있다.

Aperture 문제는 인접한 페턴 간의 매칭되는 영역이 다수 존재하기 때문에 움직임 추정의 해가 단일(unique)하게 결정되지 않음으로서 나타나는 문제이다. 이러한 문제는 주로 예측성이 강한 영역에서 나타난다. 그렇기 때문에 본 논문에서는 이러한 영역에서 보다 높은 성능을 보이는 개선된 ELA값 또는 미디어 필터 결과값에 보다 높은 가중치를 부여하여 가중합산함으로써 aperture 문제로 인한 다이너레이싱의 성능저하를 최소화한다. 즉, 공간정보를 이용함으로써 정확한 움직임 추정에 따른 시간정보의 오류를 만회한다.

Occlusion 문제는 물체의 움직임으로 인해 배경이 가려지거나 나타나면서 발생하는 문제이다. 이 경우 인접한 피레임 사이의 매칭되는 영역이 존재하지 않기 때문에 움직임 추정의 해가 존재하지 않게 된다. 설명적(backward motion estimation) 또는 후방향 움직임 추정(forward motion estimation)과 같은 한쪽 방향으로의 움직임 추정은 이러한 occlusion 문제를 피하기 어렵기 때문에, 제어하는 알고리즘에서는 그러한 영역에서 보이는 바와 같이 양방향 BMA를 이용한 움직임 추정으로 이러한 문제를 해결한다. 이 때, 방향의 선택은 블록 내의 MAD(absolute difference)값에 따라 결정된다. 같은 위치에서의 n-1번째 피레임 블록과 n번째 피레임 블록과의 MAD가 n+1번째 피레임과
4. MC를 이용한 하이브리드 디지털레이싱

BMA는 잡음에 강한 뿐 아니라 움직임이 큰 경우에도 적용이 가능하며, 하드웨어 구현이 다른 알고리즘에 비해 용이하다. 또한 병렬 구조를 통해 빠른 움직임 추정이 가능하기 때문에 이를 이용하여 실시간 디지털레이싱이 가능하다. 그러나 BMA는 평행 이동하는 움직임을 허용하기 때문에 그렇지 않은 움직임에 대한 정확한 움직임 추정이 힘들며, 불연 단위의 처리로 인해 블록 효과(block effect)와 같은 영상의 왜곡이 발생할 수 있다. 반면 이러한 단점을 극복하기 위해, 향후방 BMA를 이용하여 디지털레이싱을 수행하였을 경우 영상을 가공한 영상의 품질을 향상시킬 수 있다. 따라서 제안하는 알고리즘은 식 (8)와 같이 개선된 ELA를 활용한 양방향 BMA 결과를 통해 얻은 움직임 보상량(\(F_{MC}\)) 또는 식 (9)의 미디언 필터값과의 비교합을 통해 디지털레이싱을 수행하게 된다.

\[
F(y, k) = F_{ELA}(y, k) \cdot (1 - w) + F_{MC}(y, k) \cdot w \\
(0 \leq w \leq 1)
\]

\[
F(y, k) = \text{median}(D, E, F, G, H, I, F_{MC}, F_{ELA}, B(x, k))
\]

개선된 ELA의 경우 공간 정보를 사용하기 때문에 상대적으로 영상 조건의 변화에 영향을 적게 받는다. 따라서 움직임 추정이 어려운 조건이라 판단되는 경우 \(F_{ELA}\)에 보다 높은 가중치를 부여하여 영상 조건에 따른 성능저하를 극복하게 된다. 또한 두 방법 간의 성능 특성을 비교하기 위해 두 방법 간의 차이가 적은 경우 식 (9)의 미디언 필터를 활용하게 된다. 여기서 사용되는 변수들은 그림 7에 나타내 있으며, \(B\)는 전방향 움직임 추정 시 \(K\)는 후방향 움직임 추정 시 사용된다. 이를 통해 이전 프레임과 다음
그림 8. 제안하는 디터레이시 알고리즘 순서도
Fig. 8. Flowchart of the proposed algorithm.

그림 9. 움직임 추정의 검증
Fig. 9. Verification of motion estimation.

프레임 그리고 현재 프레임의 주변값을 반영하게 된다. 이러한 가중치의 조정은 식 (8)의 가중변수 \(w \)에 의해 결정된다. \(w \)는 0과 1사이의 값을 갖게 되며, 이는 그림 8의 순서도에 따라 적합한 값으로 결정된다. 가중변수의 조절 방법은 MC 값과 개선된 ELA 값의 차이에 의해 달라진다.

MC 값과 개선된 ELA 값의 차이값이 크 경우, 움직임 추정의 신뢰성 판단에 의해 가중변수가 조절된다. 이 때, 움직임 추정의 신뢰성은 그림 8의 순서도에서 보는 바와 같이 \(D1 \)과 \(D2 \)의 최소값과 \(D3 \)와의 비교를 통해 판단하게 된다. 이 때 사용된 \(D1, D2, \) 그리고 \(D3 \)은 그림 9에서 보는 바와 같다. \(D1 \)은 전 프레임과 현재 프레임에서의 3x3 마스크인 \(mask_1 \)과 \(mask_2 \) 내에서의 각 픽셀 차이값의 합을, \(D2 \)는 전체 프레임과 다음 프레임에서의 \(mask_2 \)과 \(mask_3 \) 내에서 픽셀 차이값의 합을 나타낸다. 그리고 \(D3 \)은 \(mask_2 \)와 움직임 추정에 의한 움직임 캡쳐에 해당하는 위치인 \(mask_3 \) 내에서 각 픽셀 차이값의 합을 라 한다. 만약 \(D1 \)과 \(D2 \)의 최소값이 \(D3 \)보다 크다면 움직임 추정의 신뢰성이 크다고 판단하여 MC값을 사용한 디터레이시를 수행하며, 그렇지 않은 경우 식 (9)의 미디안 필터값과 고정된 ELA값에 의해 결정된 가중변수를 사용하여 디터레이시를 수행한다.

반면, MC와 개선된 ELA의 차이값이 크지 않음 경우 그림 9의 \(mask_2 \)와 \(mask_1 \) 내에서 비교하는 차이값의 합을 라는 \(h \)와 수직대응값의 차이값의 합을 라는 \(v \)에 의해 가중변수가 조절된다. 이는 비율가정을 만족하는 경우 일반적으로 그 특성상 수직대응점의 차이값이 큰 경우 움직임 추정 결과의 신뢰성이 떨어지기 때문이다. 다만, 개선된 ELA의 처리과정에서 사용된 가중변수 \(w_{p1}, w_{p2}, w_{p3} \)의 최대값을 통해 특징 예치 방향이 강하다고 판단되는 경우 개선된 ELA값을 사용한다. 이는 이러한 경우 개선된 ELA값을 사용한 디터레이션에보다 높은 성능을 보이는 것이다.

이러한 가중변수의 조절은 정확한 움직임 추정의 여려모양에 따른 성능저하를 막을 뿐만 아니라 제 근위계 구조에 따른 시간정보의 주요 오류를 최소화할 수 있다. 이 경우 움직임 추정에 따른 시간정보의 신뢰성이 떨어지기 때문에 가중변수 조절을 통해 개선된 ELA값을 이용하며, 주요 오류에 영향을 미치지 않는 경우를 보다 높이 활용함으로써 에러전달(error propagation)에 대한 부담을 줄일 수 있다.

III. 실험결과

1. 실험결과

제안한 알고리즘의 성능을 정량적으로 평가하기 위해 순차주시 비디오영상에서 흐름 필드와 박수 필드를 교대로 두는 셀룰러(down-sampling)하여 비율주파수들의 영상으로 제안한 디터레이션 알고리즘의 성능을 평가하였다. 성능평가는 디터레이션된 결과와 원영상의 순차주시 영상 사이의 MSE(mean square error)값을 사용하여 비교하였다. 이 때 사용된 MSE는 식 (10)과 같이 정의한다.

\[
MSE = \frac{1}{NM} \sum_{k=t+1}^{M} (F_{orig}(k) - F_{D}(k))^2
\] (10)

식 (10)에서 \(N \)와 \(M \)은 영상 크기를, \(F_{orig} \)는 순차주시 영상, \(F_D \)는 디터레이션 결과 영상을 나타낸다. 제안하는 알고리즘에서 사용된 비디오영상은 중 인
표 1. 평균 MSE 비교

<table>
<thead>
<tr>
<th></th>
<th>ELA</th>
<th>MED</th>
<th>MA-ELA</th>
<th>MC</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>mom</td>
<td>27.125</td>
<td>13.670</td>
<td>6.968</td>
<td>10.565</td>
<td>6.802</td>
</tr>
<tr>
<td>foreman</td>
<td>23.651</td>
<td>32.150</td>
<td>25.108</td>
<td>28.381</td>
<td>15.877</td>
</tr>
<tr>
<td>cops</td>
<td>44.173</td>
<td>34.656</td>
<td>29.529</td>
<td>38.783</td>
<td>25.427</td>
</tr>
<tr>
<td>kitty</td>
<td>36.843</td>
<td>26.624</td>
<td>17.044</td>
<td>36.839</td>
<td>15.315</td>
</tr>
</tbody>
</table>

2. Aperture 문제가 나타나는 경우

그림 10의 (a) ‘foreman’ 영상의 경우 배경이 문자열로 형성되는 경우 열기 문제로 인해 정확한 음직임 추정이 어렵기 때문에 MC 방법만 사용할 경우 큰 효과를 얻을 수 없다. 뿐만 아니라 배경과 블록이 모두 음직임이기 때문에 음직임에 적응적인 방법을 사용할 경우 또한 큰 효율을 기대할 수 있다. ‘cop’과 ‘kitty’ 영상의 경우는 각각 줄/아웃 (zoom in/out)과 장면 변환이 존재하는 영상으로 이러한 경우 정확한 음직임 추정이 어렵기 때문에 이 역시 MC 방법만을 사용할 경우 높은 성능을 기대할 수 없다.

제한하는 알고리즘은 ‘mom’ 영상과 같이 음직임 추정이 용이한 경우의 경우 MC 방법에 보다 많은 가중치를 두어 blurring 없는 높은 성능의 디터레이싱을 가능하게 한다. 또한, ‘foreman’, ‘cops’ 그리고 ‘kitty’ 영상에서 나타나는 정확한 음직임 추정이 어려운 경우 ELA와 미디어 필터를 통해 공간 정보를 보다 많이 활용하여 MC에 따른 문제를 최소화한다. 제한한 알고리즘들은 이러한 처리를 통해 다양한 영상 조건에서 각각의 디터레이싱 방법이 갖고 있는 성능 비교의 결과를 얻을 수 있었으나, 이는 표 1을 통해 확인할 수 있다.
3. Occlusion 문제가 나타나는 경우

그림 12의 (a)는 사람들과 전광장소기의 이동으므로 인하여 occlusion 문제가 발생하는 영상이다. 그림 12의 (b)는 BMA를 사용한 전방향 음직임 추정에 보상된 결과영상이다. 그림에서 알 수 있듯이 문제의 이동으로 인한 배경의 동상이나 가려지는 경우 전방향 또는 후방향 음직임 추정으로는 정확한 음직임 추정이 매우 어렵기 때문에 이로 인한 영상 왜곡이 존재함을 확인할 수 있다. 그림 12의 (c)는 양방향 BMA를 사용한 음직임 보상에 의해 얻어진 영상이다. 그림에서 보듯이 물체단위의 처리로 인한 물체현상이 존재하지만, 앞선 프레임과 다음 프레임에서 필요한 정보를 얻기 때문에 occlusion 문제가 발생하지더라도 이로 인한 영상 왜곡이 최소화됨을 확인할 수 있다. 그림 12의 (d)는 제안하는 다인터레이싱 결과영상이다. 그림 12의 (e), (f), 그리고 (g)의 차영상에서 알 수 있듯이 제안하는 방법의 경우 양방향 음직임 추정을 통해 인접한 프레임에서 필요한 정보를 얻으며, 이 과정에서 발생하는 물체현상을 제한된 ELA와 미디언 필터를 통한 공간정보의 활용으로 제한하는 방법과의 차영상을 비교할 때 상호간의 차이가 보이지 않음을 확인할 수 있다. 그림 13의 (a), (b)는 중 인/아웃(Zoom in/out)이 존재하는 경우다. 'cops' 영상은 중 인/아웃이 포함되는 비디오 영상으로, 이 중 그림 13의 (a)는 중 인이 존재하는 영상이다. 이러한 경우 제안된 ELA와 MC 방법 모두 영상의 blurring 현상과 음직임 추정 오류로 인해 전반적으로 높은 MSE값을 보인다. 제안하는 알고리즘은 중 인으로 인해 음직임 추정이 어려운 경우 식 (9)과 같은 비디언 필터를 사용하여 주변값을 반영하게 된다. 이러한 주변값의 반영을 통해, MC 방법과 제안하는 방법을 비교한 그림 13의 (c)와 (f)에서 보듯이, 보다 높은 성능의 다인터레이싱 결과를 얻을 수 있다. 또한 중 인의 경우 역시 중 인과 비슷한 영상조건을 갖고 있기 때문에 마찬 가지 이유로 높은 성능의 다인터레이싱이 가능하다.
5. 장면변화가 존재하는 경우

'kitty' 영상은 장면변화를 포함하는 비디오 영상이다. 이러한 장면변화가 존재하는 경우 시간정보를 활용하기 어렵기 때문에 시간정보를 기반으로하는 MC 방법을 사용하여 디интер레이싱을 할 경우, 심각한 영상왜곡을 가져올 수 있다. 그림 14는 'kitty' 영상에서 시간에 따른 MSE값을 나타낸다. MC 방법의 경우 일반적으로 낮은 MSE값을 보이지만, 급격한 장면변화가 일어난 85번째 프레임에서 정확하지 않은 움직임 추정으로 인해 다른 방법에 비해 높은 MSE값을 갖게 되어 확인할 수 있다. 반면, 개선된 ELA를 사용한 경우는 이러한 장면변화에도 불구하고 MSE값의 변화가 크게 없음을 알 수 있다. 제안하는 디인터레이싱 방법은 급격한 장면변화가 일어난 경우 개선된 ELA에 보다 높은 가중치를 부여하여 움직임 추정 오류에 따른 영상왜곡을 피하게 된다.

그림 15는 급격한 장면변화가 일어난 85번째 프레임 영상으로, 이 경우 주로 개선된 ELA에 의해 디интер레이싱 되는다. 비록, 이러한 개선된 ELA의 사용은 그림 15의 (d)에서 보듯 수평방향의 에지에 대해 제대로 보간할 수 없지만, 그림 15의 (c)와 (d)의 비교에서 알 수 있듯이 장면변화에 따른 움직임 추정의 오류로 인한 영상왜곡 현상을 보이는 MC 방법에 비해 보다 좋은 화질을 얻을 수 있다. 이는 장면변화가 발생하더라도 MC 방법을 사용하여 얻을 수 있는 높은 성능을 효율적으로 유지할 수 있게 한다. 그림 15의 (b)는 이러한 결과를 보여준다.

다 Lumpur (dissolve)로 인한 장면변화가 존재하는 경우에도 일반적으로 움직임 추정이 어렵기 때문에 MC 방법보다 ELA와 같은 공간정보를 이용하는 방법이 보다 높은 화질의 영상을 얻을 수 있다. 제안하는 방법은 급격한 장면변화뿐만 아니라 다 Lumpur로 인한 장면변화에도 개선된 ELA 방법을 사용하여 공간정보를 보다 많이 활용함으로써 높은 화질의 디нтер레이싱 결과를 얻을 수 있다. 그림 16의 (b), (c) 그리고 (d)는 이러한 결과를 보여준다.

IV. 결론

디인터레이싱에 있어 MC 방법에 의한 시간정보의 사용은 영상의 blurring 없이 높은 화질의 디интер레이싱을 가능하게 해준다. 하지만, aperture 문제나 occlusion 문제가 존재할 경우 정확한 움직임 추정이 어렵
기 때문에 이로 인한 영상 해질의 가능성에 존재한다. 본 논문에서는 공간정보와 영상성 추정을 통해 이러한 문제에 따른 영상 해질을 최소화하여, 높은 화질의 다
인터넷이성가 가능한 알고리즘을 제안하였다. 영상 조
건의 변화에 영향이 적은 공간정보의 사용은 부정확한
움직임 추정이나 과작선조 조명 및 장면 변화와 같이
정확한 시간정보를 잃기 어려운 경우에도 효율적인 다
인터넷이성가 가능하게 한다. 뿐만 아니라, 재귀적 처리
로 인한 예리점달에 대한 부담을 줄일 수 있다.

일반적으로 다인터넷이성은 실시간 처리를 요구하는
경우가 많다. 제안하는 방법에서 요구되는 인산량은 움
직임 추정에서의 인산량에 크게 의존한다. 이러한 움직
임 추정은 하드웨어 구현이 용이한 BMA를 사용하였으
며, 전체적인 구성이 단순하기 때문에 하드웨어적 구현
에 적합하다. 이러한 하드웨어 구현은 실시간으로 다양
한 조건의 영상을 대상으로 높은 성능의 비밀주사방식
에서 순차주사방식으로의 변환을 가능하게 해준다.

참고 문헌

[1] G. De Haan and E. B. Bellers, "Deinterlacing—an
adaptive interlaced-to-progressive conversion," in
Signal Processing of HDTV, IV, E. Dubois and
L. Chiariglione, Eds. Amsterdam, The Nether
lands: Elsevier Science Publisher, pp. 749-756,
1993.
motion-adaptive high-definition converter for
vali, "Time-recursive deinterlacing for IDTV
and pyramid coding," Signal Processing: Image
1990.
video signal," IEEE Transactions on Consumer
1994.
conversion using edge information," in Signal
Processing of HDTV, II, L. Chiariglione, Ed.
Amsterdam, The Netherlands: Elsevier Science
upconversion," IEEE Transactions on Consumer
1994.
processing and communications, Upper Saddle
video format conversion using bidirectional
motion estimation and hybrid error concealment,"
Journal of Information Science and Engineering,
저자 소개

변 승 찬(학생회원)
2002년 8월 서강대학교 전자공학과 학사
2002년 9월~현재 서강대학교 전자공학과 석사과정 재학 중

<주관심분야: 영상신호해석, 컴퓨터비전,DTV>

변 정 문(학생회원)
2003년 2월 서강대학교 전자공학과 학사
2003년 2월~현재 서강대학교 전자공학과 석사과정 재학 중

<주관심분야: 영상신호해석, 컴퓨터비전,DTV>

김 경 훈(정회원)
1984년 서강대학교 전자공학과 학사
1986년 서강대학교 전자공학과 석사
1996년 State University of New York at Buffalo 전기 및 컴퓨터공학과 박사
1997년 9월~현재 서강대학교 전자공학과 부교수
<주관심분야: 영상신호해석, 페턴인식, 문서영상 처리, embedded system design>