DOI QR코드

DOI QR Code

Topology Design Optimization of a Magnetic System Consisting of Permanent Magnets and Yokes and its Application to the Bias Magnet System of a Magnetostrictive Sensor

영구자석과 요크를 포함한 자기 시스템의 위상최적설계 및 자기 변형 센서의 바이어스 자석 설계에의 응용

  • 조승현 (서울대학교 대학원) ;
  • 김윤영 (연세대학교 기계공학부) ;
  • 유정훈 (서울대학교 기계항공공학부)
  • Published : 2004.11.01

Abstract

The objective of this investigation is to formulate and carry out the topology optimization of a magnetic system consisting of permanent magnets and yokes. Earlier investigations on magnetic field topology optimization have been limited on the design optimization of yokes or permanent magnets alone. After giving the motivation for the simultaneous design of permanent magnets and yokes, we develop the topology optimization formulation of the coupled system by extending the technique used in structural problems. In the present development, we will also examine the effects of the functional form for permeability penalization on the optimized topology.

Keywords

Topology Optimization;Permanent Magnet;Yoke;Magnetostrictive Sensor

References

  1. Petrie, R., 1993, 'Permanent magnets in review,' Proceedings of Electrical Electronics Insulation Conference and Electrical Manufacturing & Coil Winding Conference, 4-7 Oct 1993, Chicago, USA https://doi.org/10.1109/EEIC.1993.631049
  2. Howe, D., 2000, 'Magnetic actuators,' Sensors and Actuators, Vol. 81, pp. 268-274 https://doi.org/10.1016/S0924-4247(99)00174-0
  3. Yoo, J., Kikuchi, N., and Volakis, J. L., 2000, 'Structural Optimization in Magnetic Devices by the Homogenization Design Method,' IEEE Trans. Mag., Vol. 36, No.3, pp. 574-580 https://doi.org/10.1109/20.846220
  4. Byun, J., Hahn, S., and Park, I, 1999, 'Topology Optimization of Electrical Devices Using Mutual Energy and Sensitivity,' IEEE Trans. Mag., Vol. 35, No.5, pp. 3718-3720 https://doi.org/10.1109/20.800642
  5. Lowther, D. A., Mai, W., and Dyck, D. N., 1998, 'A Comparison of MRI Magnet Design Using a Hopfield Network and the Optimized Material Distribution Method,' IEEE Trans. Mag., Vol. 34, No.5, pp. 2885-2888 https://doi.org/10.1109/20.717672
  6. Dyck, D. N. and Lowther, D. A., 1997, 'Composite Microstructure of Permeable Material for the Optimized Material Distribution Method of Automated Design,' IEEE Trans. Mag., Vol. 33, No.2, pp. 1828-1831 https://doi.org/10.1109/20.582634
  7. Cho, S. H., Kim, Y., and Kim, Y. Y., 2003, 'The Optimal Design and Experimental Verification of the Bias Magnet Configuration of a Magnetostrictive Sensor for Bending Wave Measurement,' Sensors and Actuators A. Physical, Vol. 107, No.3, pp. 225-235 https://doi.org/10.1016/S0924-4247(03)00349-2
  8. Kim, Y. Y. and Kim, W., 2004, 'Yoke Topology Optimization of the Bias Magnetic System in a Magnetostrictive Sensor,' Transactions of the KSME A, Vol. 28, No.7, pp. 923-929 https://doi.org/10.3795/KSME-A.2004.28.7.923
  9. Park, S., Kang, J., and Wang, S., 2003, 'Multi-Domain Topology Optimization of Electromagnetic Systems,' Proceeding of EMF 2003, Aachen, Germany, October 6-9, pp. 409-412
  10. Thomsen, J., 1992, 'Topology Optimization of Structures Composed of One or Two Materials,' Journal of Structural Optimization, Vol. 5, pp. 108-115 https://doi.org/10.1007/BF01744703
  11. Gibiansky, L. V. and Sigmund, O., 2000, 'Multiphase Elastic Composites with Extremal Bulk Modulus,' Journal of the Mechanics and Physic of Solids, Vol. 48, No.3, pp. 461-498 https://doi.org/10.1016/S0022-5096(99)00043-5
  12. Yin, L. and Ananthasuresh, G. K., 2001, 'Topology Optimization of Compliant Mechanisms with Multiple Materials Using a Peak Function Material Interpolation Scheme,' Structural and Multidisciplinary Optimization, Vol. 23, pp. 49-62 https://doi.org/10.1007/s00158-001-0165-z
  13. Sigmund, O. and Torquato, S., 1996, 'Composites with Extremal Thermal Expansion Coefficients,' Applied Physics Letters, Vol. 69, No. 21, pp. 3203-3205 https://doi.org/10.1063/1.117961
  14. Sigmund, O. and Torquato, S., 1997, 'Design of Materials with Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method,' Journal of the Mechanics and Physics of Solids, Vol. 45, No.6, pp. 1037-1067 https://doi.org/10.1016/S0022-5096(96)00114-7
  15. Sigmund, O., 2001, 'Design of Multiphysics Actuators Using Topology Optimization - Part II: Two-Material Structures,' Computer Methods in Applied Mechanics and Engineering, Vol. 190, pp. 6605-6627 https://doi.org/10.1016/S0045-7825(01)00252-3
  16. Yin, L. and Ananthasuresh, G. K., 2002, 'A Novel Topology Design Scheme for the Multi-Physics Problems of Electro-Thermally Actuated Compliant Micromechanisms,' Sensors and Actuators A. Physical, Vol. 97-98, pp. 599-609 https://doi.org/10.1016/S0924-4247(01)00853-6
  17. Kwun, H. and Teller, C. M., 1994, 'Magnetostrictive Generation and Detection of Longitudinal, Torsional, and Flexural Waves in a Rod,' Journal of Acoustical Society of America, Vol. 96, pp. 1202-1204 https://doi.org/10.1121/1.411391
  18. Lee, H. C. adn Kim, Y. Y., 2002, 'Wave Selection Using a Magnetomechanical Sensor in a Solid Cylinder,' Journal of Acoustical Society of America, Vol. 112, pp. 953-960 https://doi.org/10.1121/1.1497623
  19. Dapino, M. J., Smith, R. C. and Flatau, A. B., 2000, 'Structural Magnetic Strain Model for Magnetostrictive Transducer,' IEEE Transactions on Magnetism, Vol. 36, pp. 545-556 https://doi.org/10.1109/20.846217
  20. Salon, S. J., 1995, Finite Element Analysis of Electrical Mechanics, Kluwer Academic Publishers, Boston
  21. Yang, R. J. and Chuang, C. H., 1994, 'Optimal Topology Design Using Linear Programming,' Computers and Structures, Vol. 52, pp. 265-275 https://doi.org/10.1016/0045-7949(94)90279-8
  22. Haug, E. J., Choi, K. K. and Komkov, V., 1986, Design Sensitivity Analysis of Structural Systems, Academic Press
  23. Vanderplaats, G. N., 1999, Numerical Optimization Techniques for Engineering Design, Vanderplaats Research & Development, INC.