Spectral Element Analysis of an Axially Moving Thermoelastic Beam

축 방향으로 이동하는 열 탄성 보의 스펙트럴요소해석

  • 김도연 (인하대학교 대학원 기계공학과) ;
  • 권경수 (인하대학교 대학원 기계공학과) ;
  • 이우식 (인하대학교 기계공학과)
  • Published : 2004.09.01


The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics may provide very accurate solutions, together with drastically reducing the number of degrees of freedom to improve the computation efficiency and cost problems. Thus, this paper develops a spectral element model for the coupled thermoelastic beam which axially moves with constant speed under a uniform tension. The accuracy of the spectral element model is then evaluated by comparing the natural frequencies obtained by the present element model with those obtained by the conventional finite element model.


  1. Kovalenko, A, Thermoelasticity, Basic Theory and Applications, Groningen, The Netherlands Wolters-Noordhoff, 1969
  2. Massalas, C. and Kalpakidis, V., 'Coupled Thermoelastic Vibrations of a Timoshenko Beam', Journal of Appl. Engng Sci. Vol.22, No.5, 1984, pp.459-463 https://doi.org/10.1016/0020-7225(84)90081-8
  3. Eslami, M. R. and Vahedi, H., 'Coupled Thermoelasticity Beam Problems', AIAA Journal, Vol.27, No.5, 1988, pp.662-665 https://doi.org/10.2514/3.10161
  4. Bercin, A. N., 'Free Vibration Solution for Clamped Orthotropic Plates Using Kantorovitch Method', Journal of Sound and Vibration, Vol.96, No.2, 1996, pp.243-247 https://doi.org/10.1016/0022-460X(84)90582-0
  5. Xie, W. C. and Elishakoff, I., 'Buckling Mode Localization in Rib-Stiffened Plates with Misplaced Stiffners', Chaos, Solitons & Fractals, Vol.11 , 2000, pp.l559-1574 https://doi.org/10.1016/S0960-0779(99)00078-8
  6. Reddy. J. N., Theory and Analysis of Elastic Plates, Taylor & Francis, Philadelphia, 1999
  7. Ugral, A. C., Stresses in Plates and Shells, McGraw-Hili, New York, 1999
  8. Danilovskaya, V., 'Thermal Stresses in an Elastic Half-Space Due to Sudden Heating of its Boundary', Prikl Mat. Mekh., Vo1.14, 1950, pp.316-324
  9. Lee, U, 'Thermal and Electromagnetic Damping Analysis and Its Application', Ph.D. Thesis, Stanford University, California, 1984
  10. Biot, M., 'Thermoelasticity and Irreversible Thermo- dynamics', Journal of Applied Physics, Vo1.27, 1956, pp.240-253. https://doi.org/10.1063/1.1722351
  11. Carlaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, Oxford, London, 1959
  12. Doyle, J. F., Wave Propagation in Structures, Springer-Verlag, New York. 1997
  13. Mukherjee, N. and Sinha, P. K., 'Thermal Shocks in Composite Plates: A Coupled Thermoelastic Finite Element Analysis', Composite Structures, Vo1.34, 1996, pp.I-12 https://doi.org/10.1016/0263-8223(95)00121-2
  14. Massalas, C., Dalamangas, A, and Tzivanidis, G., 'A Note of the Dynamics of Thermoelastic Plates', Journal of Sound and Vibration, Vol.8I , No.2, 1982, pp.303-306 https://doi.org/10.1016/0022-460X(82)90212-7
  15. Boley, B. A .and Barber, A. D., 'Dynamic Response of Beams and Plates to Rapid heating', Journal of Applied Mechanics, Vol. 24, 1957, pp.413-416