DOI QR코드

DOI QR Code

Statistical Analysis of a Loop Designed Microarray Experiment Data

되돌림설계를 이용한 마이크로어레이 실험 자료의 분석

  • 이선호 (세종대학교 응용수학과)
  • Published : 2004.11.01

Abstract

Since cDNA microarray experiments can monitor expression levels for thousands of genes simultaneously, the experimental designs and their analyzing methods are very important for successful analysis of microarray data. The loop design is discussed for selecting differentially expressed genes among several treatments and the analysis of variance method is introduced to normalize microarray data and provide estimates of the interesting quantities. MA-ANOVA is used to illustrate this method on a recently collected loop designed microarray data at Cancer Metastasis Research Center, Yonsei University.

References

  1. Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson, J., Lu, L., Lewis, D.B., Tibshirani,R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wilson, W., Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O., Staudt, L.M.(2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature Genetics, 403, 503-511㍟㌵㜀䑈䡈䍚弲〰㡟瘴ㅮ㑟㈷㤀䑈䩇䜷弲〰㉟瘵ㅮ㥟㌸㤀䑈䩊䩘弲〰㍟瘴の㍟㈱㔀䑈䩊䱎弲〰㍟瘴の㑟㌴䑈䩊乏弲〰㍟瘴の㕟㌹㜀䑈䩒䈷弲〰㕟瘴の㙳ㄱㅟ㘵㌀䑈䵓䍋弲〰㑟瘳㑮㉟ㄲ㤀䑈乇䉖弲〰㑟瘶㝮㉟ㄹ 䑈乇䉖弲〰㡟瘷㕮㕟㔹㜀䑈佂䉁弲〰㝟瘴の㉟ㄶ㈀䑈佊䉎弲〰㍟瘲ㅮㅟ㤹䑈体䉑弲〰㑟瘱㥮ㅟㄷ䑈偂䍅弲〰㍟瘴ㅮ㙟㠱㐀䑈偂䍅弲〰㝟瘴㕮㑟㌵㐀䑈則䍋弲〰㉟瘴㍮㉟㈳㔀䑈則䍋弲〰㍟瘴㑮㥟㈰㐷䑈則䍋弲〰㕟瘴㙮㥟ㄵ㈶䑈升䉑弲〰㑟瘴㝮ㅟㄱ㄀䑈升䉑弲〰㡟瘵ㅮㄱ弱㈰㔀䑈华䉙弲〰㕟瘳ㅮ㍟ㄶ㘀䑊䝏䉒弲〰㝟瘲㝮㙟㌹㐀䑊䡏䈷弲〰㉟瘲㙮㙟㜶㤀䑊䩈䈲弲〰㑟瘴の㉟ㄱ㤀䑊体䉋弲〰㕟瘱の㕟㘵㐀䑍䉓䍕弲〰㑟瘲㡮㑟㈵㜀䑍䩇䑁弲〰㝟瘴㥮㑟㔳㤀䑎䉈䉑弲〰㕟瘲㥮㕟㐶 䑏䭈䈵弲〰㑟瘶㙮㉟㄰㌀䑏䭊䉖弲〰㑟瘲㙮ㅟ㜱䑒卒䑈弲〰㉟瘱㙮㍟㔱㐀䑒卒䑈弲〰㑟瘱㡮㑟㄰㈱䑒卒䑈弲〰㝟瘲ㅮ㙟ㄵ㈰䑓䡂䉆弲〰㕟瘳㝮㍟ㄴ
  2. Callow, M.J., Dudoit, S., Gong, E.L., Speed, T.P., Rubin, E.M. (2000). Microarray expression profiling identifies genes with altered expression in HDL-deficient mice. Genome Research, 10, 2022-2029 https://doi.org/10.1101/gr.10.12.2022
  3. Cui,X.Q., Hwang, J.T., Qiu,J., Blades, N.J. and Churchill,G.A. (2004). Improved statistical tests for differential gene expression by shrinking variance components, submitted. Posted on http://www.jax.org/staff/churchill/labsite/Pubs
  4. Cui, X.Q., Kerr, K. and Churchill, G.A. (2003). Transformatious for cDNA inicroarray data. Statistical Applications in Genetics and Molecular Biology, 2, article 4
  5. Dudoit, S., Fridlyand, J., Speed, T.P. (2002). Comparison of methods for classification of tumors using gene expression data. Journal of the American Statistical Association, 97, 77-87 https://doi.org/10.1198/016214502753479248
  6. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-537 https://doi.org/10.1126/science.286.5439.531
  7. Huang, E., Ishida, S., Pittman, J., Dressman, H., Bild, A., Kloos, M., Amico, M.D., Pestell, R.G., West, M., Nevins, J.(2003). Gene expression phenotypic models that predict the activity of oncogenic pathways. Nature Genetics, 34, 226-230 https://doi.org/10.1038/ng1167
  8. Kendziorky, C.M., Zhang, Y., Lan, H., Attie, A.D. (2003). The efficienty of pooling mRNA in microarray experiment. Biostatistics, 4, 465-77 https://doi.org/10.1093/biostatistics/4.3.465
  9. Kerr, K., Churchill, G.A.(2001a). Experimental design for gene expression microarrays. Biostatistics, 2, 183-201 https://doi.org/10.1093/biostatistics/2.2.183
  10. Kerr, K., Churchill, G.A.(2001b). Bootstrapping cluster analysis : Assessing the reliability of conclusion from microarray experiments. Proceedings of the National Academy of Sciences, 98, 8961-8965 https://doi.org/10.1073/pnas.161273698
  11. Kerr, K., Martin, M., Churchill, G.A.(2000). Analysis of variance for gene expression microarray data. Journal of Computational Biology, 7, 819-837 https://doi.org/10.1089/10665270050514954
  12. Kim, B.S., Lee, S., Rha, S.Y., Chung, H.C.(2003). cDNA microarray experiment : Design issues in early stage and the need of normalization. Cancer Research and Treatment,35, 533-40 https://doi.org/10.4143/crt.2003.35.6.533
  13. Newton, M.N., Kendziorski, C.M., Richmond, C.S., Blattner, F.R., and Tsui, K.W. (2001). On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology, 8, 37-52 https://doi.org/10.1089/106652701300099074
  14. Nutt, C.L., Mani, D.R., Betensky, R.A., Tamayo, P., Cairncross, G., Ladd, C., Pohl, U., Hartmann, C., McLaughlin, M.E., Batchelor, T.T., Black, P.M., Deimling, A.V., Pomeroy, S.L., Golub, T.R., Louis, D.N. (2003). Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Research, 63, 1602-1607
  15. Oleksiak, M.F., Churchill, G.A., Crawford, D.L.(2002). Variation in gene expression within and among natural populations. Nature Genetics, 32, 261-266 https://doi.org/10.1038/ng983
  16. Pheiffer, R.M., Rutter, J.L., Gail, M.H., Struewing, J. and Gastwirth, J.L.(2002). Efficiency of DNA pooling to estimate joint allete frequencies and measure linkage disequilibrium. Genetic Epidemiology, 22, 94-102 https://doi.org/10.1002/gepi.1046
  17. Sapir, M. aud Churchill, G.A. (2000). Estimating the posterior probability of differential gene expression from microarray data, Poster, www.jax.org/research/churchill/Pubs/index.html
  18. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.(2001). Missing value estimation methods for DNA microarrays. Bioinformatics, 17, 520-525 https://doi.org/10.1093/bioinformatics/17.6.520
  19. Tusher, V.,Tibshirani, R., Chu, G.(2001). Significance analysis of microarray applied to the ionizing radiation response, Proceedings of the National Academy of Sciences, 98, 5116-5121 https://doi.org/10.1073/pnas.091062498
  20. Wolfinger, R.D., Gibson, G., Wolfinger, E.D., Benett, L., Hamadeh, H., Bushel, P., Afshari, C. and Paules, R.(2001). Assessing gene significance from cDNA microarray expression data via mixed models. Journal of Computational Biology, 8, 625-37 https://doi.org/10.1089/106652701753307520
  21. Wu, H., Kerr, K. and Churchill, G.A.(2003). MAANOVA: A Software Package for the Analysis of Spotted cDNA Microarray Experiments, Chapter of the analysis of gene expression data: methods and software, Springer
  22. Yang, Y.H., Buckley, M.J., Dudoit, S., Speed, T.P. (2000). Comparison of methods for image analysis on cDNA microarray data. Technical Report, 581, Dept. of Statistics, Univ. of California at Berkeley
  23. Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngal, J. and Speed, T. (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30 , 4: e15 https://doi.org/10.1093/nar/30.4.e15