Studies on the Selective Separation and Preconcentration of Cr(VI) Ion by XAD-16-Chromotropic Acid Chelating Resin

XAD-16-Chromotropic Acid 킬레이트 수지에 의한 몇 가지 금속이온의 선택적 분리 및 농축에 관한 연구

  • Received : 2004.01.15
  • Accepted : 2004.03.11
  • Published : 2004.06.25


A new polystyrene-divinylbenzene chelating resin containing 4,5-dihydroxy-naphthalene-2,7-disulfonic acid (chromotropic acid : CTA) as functional group has been synthesized and characterized. The sorption and desorption properties of this chelating resin for Cr(III) ion and Cr(VI) ion including nine metal bloodstain. As a results, FOB test kit could be effectively applied to identification of human blood at chelating resin was stable in acidic and alkaline solution. The Cr(VI) ion is selectively separated from Cr (III) ion at pH 2 and the maximum sorption capacity of Cr(VI) ion is 1.2 mmol/g. In the presence of anions such as $F^-$, $SO{_4}^{2-}$, $CN^-$, $CH_3COO^-$, $NO{_3}^-$, the sorption of Cr(VI) ion was reduced but anions such as $PO{_4}^{3-}$ and $Cl^-$ revealed no interference effect. The elution order of metal ions obtained from breakthrough capacity and overall capacity at pH 2 was Cr(VI)>Sn(II)>Fe(III)>Cu(II)>Cd(II)${\simeq}Pb(II){\simeq}Cr(III){\simeq}Mn(II){\simeq}Ni(II){\simeq}Al(III)$. Desorption characteristics for Cr(VI) ion was investigated with desorption agents such as $HNO_3$, HCl, and $H_2SO_4$. It was found that the ion showed high desorption efficiency with 3 M HCl. As the result, the chelating resin, XAD-16-CTA was successfully applied to separation and preconcentration of Cr (VI) ion from several metal ions in metal finishing works.


Polystyrene-divinylbenzene;Chelating resin;Chromotropic acid;Sorption;Desorption


  1. S. Csilla and G. Attila, Microchem. J., 58, 251-255(1998).
  2. F. Brito and J. Ascanio, Polyhydron, 16(21), 3835-3846(1997).
  3. D. D Kerger and GE Corbett, Toxicol. A. Pharmacol., 141, 145(1996).
  4. W. Jin, A. Kevin and M. David, Anal. chem., 71, 1027-1032(1999).
  5. S. B. Savvin, O. P. Shvorva and V. P. Dedkova, Anal. Chem., 51(3), 286-290(1996).
  6. A. A. Morozova, Russian J. of App. Chem., 168(5), 279(1995).
  7. S. Mustafa and Latifelci, Anal. Lett., 30(3), 623-631(1997).
  8. W. B. James and D. Kirk, J. Chem, Eng. Data, 43, 895-918(1998).
  9. C. Michaela, Carcinogenesis, 16(5), 1135-1139(1995).
  10. S. Pechenyuk and L. Kuzmich, Colloids Surf., 144, 43-48(1998).
  11. K. Fytianos, Voudrias and A Tsechpenakis, J. Environ. Sci. Health, 32, 2419-2427(1997).
  12. J. Posta and R. Toth, Microchem. J., 54, 195-203(1996).
  13. P. Beena and C. Uma., Colloids Surf., 132, 145-151(1998).
  14. Z. Lianbo and A. L. Peter, J. Am. Chem. Soc., 118, 12624-12637(1996).
  15. G. Nickless, F. H. Pollard, Anal. Chim. Acta., 39, 37(1967).
  16. C. R. Al,, Roumaine de Chimie, 25(8), 1021-1211(1980).
  17. K. David and P. Patricia., Environ, Sci. Technol., 32, 2699-2698(1988).
  18. W. Lee, S. E. Lee, M. K. Kim, C. H. Lee and Y. S. Kim, Bull. Kor. Chem. Soc., 23(8), 1067-1072(2002).
  19. A. Hirohumi and W. Norimoto, Bull. Chem. Soc. Jpn., 69, 1133-137(1996).
  20. S. J. Bror., Acta Chem. Scand., 14(176), 927-932(1998).
  21. R. J. Burci and G. P. John, Environ. Sci. Technol., 31, 2377-2381(1995).
  22. L. Voropanova, S. Rubanovskaya and E. Getoeva, Russian J. App. Chem., 71(9), 1531-1536 (1988).
  23. M. Cieslak, Polyhedron, 15(21), 3667-3689(1995).
  24. Christian S. and C. Elpida., Environ, Sci. Tech., 29(1), 2(1995).
  25. D. C. Sharma and C. F. Forster, Process Biochem., 31(3), 645-660(1998).
  26. H. Sadayuki., N. Yoichi and Kenichisano, Anal. Sci., 14, 105(1998).
  27. Z. Zhiqiang, G. Roumei and L. Jingtian, Microchem. J., 58, 1-5(1998).
  28. G. E. Ficken and E. S. Lane, Anal. Chem. Acta., 16, 756(1957).
  29. S. Ladislav, J. Pavel and C. Jaroslav, Collet. Czech. Chem. Commun., 56, 327(1991).


Supported by : 경희대학교