Determination of trace actinide (Am, Pu, Th, U) using alpha spectrometry and neutron activation analysis

알파분광법과 중성자방사화분석법에 의한 극미량의 악티늄계원소 (Am, Pu, Th, U)분석연구

  • Yoon, Yoon Yeol (Groundwater & Geothermal Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Lee, Kil Yong (Groundwater & Geothermal Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Cho, Soo Young (Groundwater & Geothermal Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Kim, Yongjai (Groundwater & Geothermal Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Lee, Myong Ho (Nuclear Environment Research Division, Korea Atomic Energy Research Institute)
  • 윤윤열 (한국지질자원연구원, 지하수지열연구부) ;
  • 조수영 (한국지질자원연구원, 지하수지열연구부) ;
  • 이길용 (한국지질자원연구원, 지하수지열연구부) ;
  • 김용제 (한국지질자원연구원, 지하수지열연구부) ;
  • 이명호 (한국원자력연구소 원자력환경연구부)
  • Received : 2004.05.31
  • Accepted : 2004.07.16
  • Published : 2004.08.25

Abstract

Determination of actinides in the environmental sample requires separation of each element. This procedure is tedious and time consuming. And also, the detection limits of some nuclides using alpha spectrometry are rather higher. To overcome the lower detection limit and complicated separation procedure, a simple analytical technique for the determination of actinide isotopes in the environmental samples was developed and applied to IAEA and NIST reference sediment samples. For the separation of actinides from matrix, anion exchange resin and TRU-spec extraction chromatography resin were used and chemical yields were obtained using natural uranium, thorium, $^{242}Pu$ and $^{243}Am$ tracers. For overcoming the higher detection limits of U and Th in alpha spectrometry, neutron activation analysis was applied. Using combined method, the detection limit was increased about 10 times. The activity values of each isotope were consistent with the reference values reported by IAEA and NIST.

Keywords

Radiochemical analysis;Actinide;Neutron activation analysis

Acknowledgement

Supported by : 한국과학재단

References

  1. J.D. Eakins and P.J. Gomm, Health Phys., 14 461-467(1968).
  2. J. Mellado, M. Llaurad and G. Rauret, Anal. Chim. Acta, 443 81-90(2001).
  3. M.H. Lee and C.W. Lee, Talanta, 54 181-186(2001).
  4. R. Pilvio, J.J.LaRosa, D. Mouchel, R. Wordel, M. Bickel and T. Altzitzoglou, J. Environ. Radioact., 43 343-356(1999).
  5. S.E. Glover, R.H. Filby and S.B. Clark, J. Radioanal. Nucl. Chem., 234 201-208(1998).
  6. J.B. Truscott, P. Jones, B.E. Fairman and E.H. Evans, Anal. Chim. Acta, 433 245-253(2001).
  7. L.L. Smith, J.S. Crain, J.S. Yaeger, E.P. Horwitz, H. Diamond and R. Chiarizia, J. Radioanal. Nucl. Chem., 194 151-156(1995).
  8. W.C. Burnett, D.R. Corbett, M. Schultz, E.P. Horwitz, R. Chiarizia, M. Dietz, A. Thakkar and M. Fern, J. Radioanal. Nucl. Chem., 226 121-127(1997).
  9. H. Takeishi, Y. Kitatsuji, T. Kimura, Y. Meguro, Z. Yoshida and S. Kihara, Anal. Chim. Acta, 431 69-80(2001).
  10. E.P. Horwitz, M.L. Dietz, R. Chiarizia, H. Diamond, S.L. Maxwell III and M.R. Nelson, Anal. Chim. Acta, 310 63-78(1995).
  11. C. Pin and J.F.S. Zalduegui, Anal. Chim. Acta, 339 79-89(1997). https://doi.org/10.1016/S0003-2670(96)00499-0
  12. S.E. Glover, R.H. Filby, S.B. Clark and S.P. Grytdal, J. Radioanal. Nucl. Chem., 234 213-218(1998).
  13. M.H. Lee and C.W. Lee, Nucl. Instr. Meth. A, 447 593-600(2000).
  14. E.P. Horwitz, R. Chiarizia, M.L. Dietz and H. Diamond, Anal. Chim. Acta, 281 361-372(1993).
  15. H. Michel, J. Gasparro, G. Barci-Funel, J. Dalmasso, G. Ardisson and G. Sharovarov, Talanta, 48 821-825(1999).
  16. M.L. Dietz, E.P. Horwitz, L.R. Sajdak and R. Chiarizia, Talanta, 54 1173-1184(2001).
  17. J.B. Truscott, P. Jones, B.E. Fairman and E.H. Evans, J. Chromatogr A., 928 91-98(2001).
  18. J.V. Veselsky,, P.C. Kiel and N. Sezginer, J. Radioanal Chem., 21 97-100(1974).
  19. T. Gingell, J. Radioanal. Nucl. Chem., 226 185-189(1997).
  20. J.J.L. Rosa, W. Burnett, S.H. Lee, I. Levy, J. Gastaud and P.P. Povinec, J. Radioanal. Nucl. Chem., 248 765-770(2001).