• Kim, Dae-Sig (Department of Mathematics, Dongshin University)
  • Published : 2004.11.01


The definition of a D-admissible fuzzy subset for an operator domain D on a group G is modified to obtain new kinds of (${\in},\;{\in}\;{\vee}q$)-fuzzy subgroups such as an (${\in},\;{\in}\;{\vee}q$)-fuzzy normal subgroup, an (<${\in},\;{\in}\;{\vee}q$)-fuzzy characteristic subgroup, an (<${\in},\;{\in}\;{\vee}q$)-fuzzy fully invariant subgroup which are invariant under D. As results, some of the fundamental properties of such (${\in},\;{\in}\;{\vee}q$)-fuzzy subgroups are obtained.


  1. S. K. Bhakat, (${\in}\;{\nu}q$)–level subset, Fuzzy Sets and Systems 103 (1999), 529–533
  2. S. K. Bhakat, (${\in},\;{\in}\;{\nu}q$)-fuzzy normal, quasinormal and maximal subgroups, Fuzzy Sets and Systems 112 (2000), 299–312
  3. S. K. Bhakat and P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems 51 (1992), 235–241
  4. S. K. Bhakat and P. Das, (${\in},\;{\in}\;{\nu}q$)-fuzzy subgroup, Fuzzy Sets and Systems 80 (1996), 359–368
  5. S. K. Bhakat and P. Das, Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems 81 (1996), 383–393
  6. P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl. 85 (1981), 264–269
  7. V. N. Dixit, R. Kumar and N. Ajmal, Level subgroups and union of fuzzy subgroups, Fuzzy Sets and Systems 37 (1990), 359–371
  8. K. C. Gupta and B. K. Sarma, Operator domains on fuzzy groups, Inform. Sci. 84 (1995), 247–259
  9. D. S. Kim, (${\in},\;{\in}\;{\nu}q$)–fuzzy subgroups, Far East J. Math. Sci. 8 (2003), 161–172
  10. P. P. Ming and L. Y. Ming, Fuzzy topology 1: Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571–599
  11. N. P. Mukherjee and P. Bhattacharya, Fuzzy normal subgroups and fuzzy cosets, Inform. Sci. 34 (1984), 225–239
  12. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512–517
  13. F. I. Sidky and M. Atif Mishref, Fully invariant, characteristic, and S–fuzzy subgroups, Inform. Sci. 55 (1991), 27–33