DOI QR코드

DOI QR Code

THE HARMONIC DISTRIBUTIONS ON LIE GROUP

  • Published : 2004.10.01

Abstract

Harmonic distribution is the distribution which has the minimal value of functional called energy. In this paper it is shown as a specific distribution of semisimple Lie group whose manifold is compact.

Keywords

harmonic map;distribution;compact semisimple Lie group

References

  1. B. Y. Choi and J. W. Yim, Distributions on Riemannian manifolds, which are Harmonic maps, Tohoku math. J. 55 (2003), 175-188. https://doi.org/10.2748/tmj/1113246937
  2. J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68. https://doi.org/10.1112/blms/10.1.1
  3. J. Eells, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), no. 5, 385-524. https://doi.org/10.1112/blms/20.5.385
  4. T. Ishihara, Harmonic section of tangent bundles, J. Math. Tokushima Univ. 13 (1979), 23-27.
  5. G. Jensen and M. Rigoli, Harmonic Gauss maps, Pacific J. Math. 136 (1989), no. 2, 261-282. https://doi.org/10.2140/pjm.1989.136.261
  6. J. J. Konderak, On harmonic vector field, Publ. Mat. 36 (1992), no. 1, 217-228. https://doi.org/10.5565/PUBLMAT_36192_17
  7. H. Urakawa, Calculus of variations and harmonic maps, 132 (1993) Amer. Math. Soc.
  8. C. M. Wood, The Gauss section of a Riemannian immersion, J. London math. Soc. 33 (1986), no. 2, 157-168 https://doi.org/10.1112/jlms/s2-33.1.157
  9. Z. Zhang, Best distributions on Riemannian manifolds and elastic deformations with constant principal strains, Ph. D. Thesis (1993).

Cited by

  1. Two notes on harmonic distributions vol.37, 2014, https://doi.org/10.1016/j.difgeo.2014.09.006