DOI QR코드

DOI QR Code

STRONG LAWS OF LARGE NUMBERS FOR ASYMPTOTICALLY QUADRANT INDEPENDENT RANDOM FIELDS

Ko, Mi-Hwa;Kim, Tae-Sung;Kim, Hyun-Chull

  • Published : 2004.10.01

Abstract

In this paper we define the notion of asymptotically quadrant independent random field and derive the strong laws of large numbers for this random field.

Keywords

strong law of large numbers;pairwise positive quadrant dependent random variables;asymptotically quadrant independence;random fields

References

  1. T. Birkel, A note on the strong law of large numbers for positively dependent random variables, Statist. Probab. Lett. 7 (1989), 17-20 https://doi.org/10.1016/0167-7152(88)90080-6
  2. T. Birkel, Laws of large numbers under dependence assumptions, Statist. Probab. Lett. 14 (1992), 355-362. https://doi.org/10.1016/0167-7152(92)90096-N
  3. N. Etemadi, On the strong laws of large numbers for nonnegative random variables, J. Multivariate Anal. 13 (1983), 187-193. https://doi.org/10.1016/0047-259X(83)90013-1
  4. E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137-1153. https://doi.org/10.1214/aoms/1177699260
  5. C. M. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables. in : Y.L. Tong, ed., Inequalities in Statistics and Probability, IMS, Hayward CA, 1984, 127-140. https://doi.org/10.1214/lnms/1215465639

Cited by

  1. Moment inequalities and convergence rates in the strong laws for ρ−- mixing random fields vol.39, pp.2, 2006, https://doi.org/10.1007/s10910-005-9028-y