DOI QR코드

DOI QR Code

Assessing Heavy Metals for Estrogenicity Using a Combination of In vitro and In vivo Assays

In vitro 및 In vivo Assay를 통한 중금속의 에스트로겐성 평가

  • Park, Chul (Dept. of Food Science and Nutrition, University of Ulsan) ;
  • Kim, So-Jung (Dept. of Food Science and Nutrition, University of Ulsan) ;
  • Shin, Wan-Chul (Dept. of Food Science and Nutrition, University of Ulsan) ;
  • Kim, Hae-Gyoung (Dept. of Food Science and Nutrition, University of Ulsan) ;
  • Choe, Suck-Young (Dept. of Food Science and Nutrition, University of Ulsan)
  • 박철 (울산대학교 생활과학대학 식품영양전공) ;
  • 김소정 (울산대학교 생활과학대학 식품영양전공) ;
  • 신완철 (울산대학교 생활과학대학 식품영양전공) ;
  • 김혜경 (울산대학교 생활과학대학 식품영양전공) ;
  • 최석영 (울산대학교 생활과학대학 식품영양전공)
  • Published : 2004.11.01

Abstract

The estrogenicities of six heavy metal compounds, which contaminate frequently in foods, were assayed using a combination of in vitro and in vivo assays. The assays were 1) estrogen receptor dependent transcriptional expression assay, 2) E-screen assay and, 3) the uterotropic assay in mice. The chemicals studied were 17$\beta$ -estradiol, diethylstilbestrol (DES), arsenic oxide, bis(tri-n-butyltin), cadmium chloride, chromium chloride, lead acetate, and mercuric chloride. Using the estrogen receptor dependent transcriptional expression assay, the following estrogenicity ranking was measured: bis(tri-n-butyltin) > cadmium chloride > chromium chloride >> mercuric chloride >lead acetate = arsenic oxide. Using E-screen test, the following estrogenicity ranking was measured: bis(tri-n-butyltin) > cadmium chloride > chromium chloride >> mercuric chloride > lead acetate = arsenic oxide. Results from the uterotropic assay showed that bis(tri-n-butyltin), cadmium chloride, chromium chloride caused an increase in uterine wet weight, while lead acetate, mercuric chloride, and arsenic oxide failed to do so. Bis(tri-n-butyltin), cadmium chloride and chromium chloride showed the highest estrogenicity in three assay systems. Recent studies suggesting that bis(tri-n-butyltin), cadmium chloride have estrogenicities are compatible with the present finding. Furthermore, our study is suggesting that chromium chloride may be estrogenic. The results demonstrate that this three level-assay combination (transcriptional activation, cell proliferation, and an in vivo effect in an estrogen-responsive tissue) could serve as a useful method to assess the estrogenicity of heavy metals.

References

  1. Hui R, Cornish AL, McClelland RA, Robertson JFR, Blamey RW, Musgrove EA, Nicholson RI, Sutherland RL. 1996. Cyclin D1 and estrogen receptor messenger RNA levels are positively correlated in primary breast cancer. Clin Cancer Res 2: 923-928
  2. Jacobson JL, Jacobson SW. 1996. Dose-response in perinatal exposure to polychlorinated biphenyls (PCBs): The Michigan and North Carolina cohort studies. Toxicol Ind Health 12: 435-445 https://doi.org/10.1177/074823379601200315
  3. Koopman-Esseboom C, Weisglas-Kuperus N, de Ridder MAJ, Van der Paauw CG, Tuinstra LGMT, Sauer PJJ. 1996. Effects of polychlorinated biphenyls/dioxin exposure and feeding type on infants' mental and psychomotor development. Pediatrics 97: 700-706
  4. Ernst M, Parker MG, Rodan GA. 1991. Functional estrogen receptors in osteoblastic cells demonstrated by transfection with a reporter gene containing an estrogen element. Mol Endocrinol 5: 1597-1606 https://doi.org/10.1210/mend-5-11-1597
  5. Bern HA. 1992. The fragile fetus. In Chemically-induced alterations in sexual and functional development: the wildlife/human connection. Colborn T, Clement C, eds. Princeton Scientific Publishing, Princeton, NJ. p 9-15
  6. Jobling S, Sumpter JP. 1993. Detergent components in sewage effluent are weakly estrogenic to fish: An in vitro study using rainbow trout hepatocytes. Aquat Toxicol 27: 361-372 https://doi.org/10.1016/0166-445X(93)90064-8
  7. Newbold R. 1995. Cellular and molecular effects of developmental exposure to diethylstilbestrol: implications for other environmental estrogens. Environ Health Perspect 103(Suppl.): 83-87 https://doi.org/10.2307/3432514
  8. White R, Jobling S, Hoarse SA, Sumpter JP, Parker MG. 1994. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135: 175-182 https://doi.org/10.1210/en.135.1.175
  9. Kelce WR, Gray LE, Wilson EM. 1998. Antiandrogens as environmental endocrine disrupters. Reprod Fertil Dev 10: 105-111 https://doi.org/10.1071/R98051
  10. Colborn T, vom Saal FS, Soto AM. 1993. Developmental effect of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101: 378-384 https://doi.org/10.2307/3431890
  11. ATSDR. 1998. Toxicological Profile for Mercury. Agency for Toxic Substances and Disease Registry, Atlanta, GA
  12. Reel JR, Lamb V, Neal BH. 1996. Survey and assessment of mammalian estrogen biological assays for hazard characterization. Fundan Appl Toxicol 34: 288-305 https://doi.org/10.1006/faat.1996.0198
  13. Soto AM, Sonnennschein C, Chung KL, Fernandez MF, Olea N, Serrano FO. 1995. The E-screen assay as a tool to identify estrogens: An update on estrogenic environmental pollutants. Environ Health Perspect 103(Suppl. 7): 113- 122 https://doi.org/10.1289/ehp.95103s7113
  14. Kuiper GGJM, Lemmen JG, Carsson B, Corton JV, Safe SH, van der Saag PT, van der Burg B, Gustafsson J-$\AA$. 1998. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor $\beta$. Endocrinology 139: 4252-4263 https://doi.org/10.1210/en.139.10.4252
  15. Lapcic KO, Hampl R, Hill M, Whi K, Maharik NA, Adlercreutz H. 1998. Radioimmunoassay of free genistein in human serum. J Steroid Biochem Molec Biol 64: 261-268 https://doi.org/10.1016/S0960-0760(97)00199-4
  16. Miksicek RJ. 1993. Commonly occurring plant flavonoids have estrogenic activity. Mol Pharmacol 44: 37-43
  17. Kim SJ, Park C, Kim HG, Shin WC, Choe SY. 2004. A study on the estrogenecity of Korean arrowroot (Pueraria thunbergiana). J Korean Soc Food Sci Nutr 33: 16-21 https://doi.org/10.3746/jkfn.2004.33.1.016
  18. Kramer V, Helferich WG, Bergman A, Klasson-Wehler E, Giesy JP. 1997. Hydroxylated polychlorinated biphenyl metabolites are anti-estrogenic in a stably transfected human breast adenocarcinoma (MCF7) cell line. Toxicol Appl Pharmacol 144: 363-376 https://doi.org/10.1006/taap.1997.8163
  19. Lee SJ, Kim CM, Lee SD, Park JG, Ryi SH, Suh PG. 1995. Overexpression of phospholipase C-1 in colorectal carcinomas is associated with overexpression of factors that bind its promoter. J Biol Chem 270: 16378-16384 https://doi.org/10.1074/jbc.270.27.16378
  20. Lee SK, Choi HS, Song MR, Lee MO, Lee JW. 1998. Estrogen receptor, a common interaction partner for subset of nuclear receptors. Mol Endocrinol 12: 1184-1192 https://doi.org/10.1210/me.12.8.1184
  21. Soto AM, Chung KL, Sonnennschein C. 1994. The pesticides endosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen-sensitive cells. Environ Health Perspect 102: 380-383 https://doi.org/10.2307/3431626
  22. Song TT, Hendrich S, Murphy PA. 1999. Estrogenic activity of glycitein, a soy isoflavone. J Agric Food Chem 47: 1607- 1610 https://doi.org/10.1021/jf981054j
  23. Reeves PG, Rossow KL, Lindlauf J. 1993. Development and testing of the AIN-93 purified diets for rodents: Result on growth, kidney calcification and bone mineralization in rats and mice. J Nutr 123: 1923-1931
  24. Daston GP, Gooch JW, Breslin WJ, Shuey DL, Nikiforov AI, Fico TA, Gorsuch JW. 1997. Environmental estrogens and reproductive health: A discussion on the human and environmental data. Reprod Toxicol 11: 465-481 https://doi.org/10.1016/S0890-6238(97)00014-2
  25. Breithofer A, Graumann K, Scicchitano MS, Karathanasis SK, Butt TR, Jungbauer A. 1998. Regulation of human estrogen receptor by phytoestrogens in yeast and human cells. J Steroid Biochem Molec Biol 67: 421-429 https://doi.org/10.1016/S0960-0760(98)00139-3
  26. Golub M, Doherty J. 2004. Triphenyltin as a potential human endocrine disruptor. J Toxicol Environ Health B Crit Rev 7: 281-295 https://doi.org/10.1080/10937400490452705
  27. Gotz R. 2004. Cadmium is a metalloestrogen. Pharm Unserer Zeit 33: 83-87 https://doi.org/10.1002/pauz.200490038
  28. Henson MC, Chedrese PJ. 2004. Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp Biol Med (Maywood) 229: 383-392 https://doi.org/10.1177/153537020422900506
  29. Martin MB, Reiter R, Pham T, Avellanet YR, Camara J, Lahm M, Pentecost E, Pratap K, Gilmore BA, Divekar S, Dagata RS, Bull JL, Stoica A. 2003. Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology 144: 2425-2436 https://doi.org/10.1210/en.2002-221054
  30. Johnson MD, Kenney N, Stoica A, Hilakivi-Clarke L, Singh B, Chepko G, Clarke R, Sholler PF, Lirio AA, Foss C, Reiter R, Trock B, Paik S, Martin MB. 2003. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med 9: 1081-1084 https://doi.org/10.1038/nm902
  31. Zahid ZR, Al-Hakkak ZS, Kadhim AHH. 1990. Comparative effects of trivalent and hexavalentchromium on spermatogenesis of the mouse. Toxicol Environ Chem 25: 131-136 https://doi.org/10.1080/02772249009357512