Bee Venom Suppresses Ischemia-induced Increment of Apoptosis and Cell Proliferation in Hippocampal Dentate Gyrus

  • Lim Baek Vin (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyunghee University) ;
  • Lee Choong Yeol (Department of Physiology, College of Oriental Medicine, Kyungwon University) ;
  • Kang Jin Oh (Department of Radiation Oncology, College of Medicine, Kyunghee University) ;
  • Kim Chang Ju (Department of Physiology, College of Medicine, Kyunghee University) ;
  • Cho Sonhae (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyunghee University)
  • Published : 2004.02.01

Abstract

Cerebral ischemia resulting from transient or permanent occlusion of cerebral arteries leads to neuronal cell death and eventually causes neurological impairments. Bee venom has been used for the treatment inflammatory disease. In the present study, the effects of bee venom on apoptosis and cell proliferation in the hippocampal dentate gyrus following transient global ischemia in gerbils were investigated using immunohistochemistry for cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), caspase-3, and 5-bromo-2'-deoxyuridine (BrdU). It was shown that apoptotic cell death and cell proliferation in the hippocampal dentate gyrus were significantly increased following transient global ischemia in gerbils and that treatment of bee venom suppressed the ischemia-induced increase in apoptosis and cell proliferation in the dentate gyrus. The present results also showed that 1 mg/kg bee-venom treatment suppressed the ischemia-induced increasing apoptosis, cell proliferation, and COX-2 expression in the dentate gyrus. It is possible that the suppression of cell proliferation is due to the reduction of apoptotic cell death by treatment of bee venom. In the present study, bee venom was shown to prosses anti-apoptotic effect in ischemic brain disease, and this protective effect of bee venom against ischemia-induced neuronal cell death is closely associated with suppression on caspase-3 expression.

References

  1. Trends Neurosci v.22 Pathobiology of ischaemic stroke: an integrated view Dirnagl, U.;Iadecola, C.;Moskowitz, M.A. https://doi.org/10.1016/S0166-2236(99)01401-0
  2. Brain Res Rev v.39 Cerebral ischemia and trauma- different etiologies yet similar mechanisms: neuroprotective opportunities Leker, R.R.;Shohami, E. https://doi.org/10.1016/S0165-0173(02)00157-1
  3. Int Rev Exp Pathol v.32 Apoptosis: mechanisms and roles in pathology Arends, M.J.;Wyllie, A.H.
  4. Annu Rev Immunol v.10 Apoptosis and programmed cell death in immunity Cohen. J.J.;Duke, R.C.;Fadok, V.A.;Sellins, K.S. https://doi.org/10.1146/annurev.iy.10.040192.001411
  5. Science v.267 Apoptosis in the pathogenesis and treatment of disease Thompson CB https://doi.org/10.1126/science.7878464
  6. Methods Cell Biol v.46 Anatomical methods in cell death Kerr, J.F.;Gobe, G.C.;Winterford, C.M.;Harmon, B.V. https://doi.org/10.1016/S0091-679X(08)61921-4
  7. Neurosurgery v.42 Apoptosis in neurological disease Savitz, S.I.;Rosenbaum, D.M. https://doi.org/10.1097/00006123-199803000-00026
  8. Int Rev Cytol v.68 Cell death: the significance of apoptosis Wyllie, A.H.;Kerr, J.F.;Currie, A.R. https://doi.org/10.1016/S0074-7696(08)62312-8
  9. J Magn Reson Imaging v.18 Pain dynamics observed by functional magnetic resonance imaging: differential regression analysis technique Cho, Z.H.;Son, Y.D.;Kang, C.K.;Han, J.Y.;Wong, E.K.;Bai, S.J. https://doi.org/10.1002/jmri.10368
  10. Am J Pathol Mechanisms of Apoptosis Reed, J.C.
  11. Biochem J v.326 Caspases: the executioners of apoptosis Cohen GM https://doi.org/10.1042/bj3260001
  12. Nature v.410 Neurogenesis in the adult is involved in the formation of trace memories Shors, T.J.;Miesegaes, G.;Beylin, A.;Zhao, M.;Rydel, T.G.
  13. Nat Med v.4 Neurogenesis in the adult human hippocampus Eriksson, P. S.;Perfilieva, E.;Bjok-Eriksson, T.;Alborn, A. M.;Nordborg, C.;Peterson, D.A.;Gage, F.H. https://doi.org/10.1038/3305
  14. J Neurobiol v.36 Multipotent progenitor cells in the adult denate gyrus Gage, F.H.;Kempermann, G.;Palmer, T.D.;Peterson, D.A.;Ray, J. https://doi.org/10.1002/(SICI)1097-4695(199808)36:2<249::AID-NEU11>3.0.CO;2-9
  15. Proc Natl Acad Sci USA v.95 Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress Gould, E.;Tanapat, P.;McEwen, B.S.;Flugge, G.;Fuchs, E. https://doi.org/10.1073/pnas.95.6.3168
  16. J Neurosci v.16 Neurogenesis in the dentate gyrus of the adult rat, age-related decrease of neuronal progenitor proliferation Kuhn, H.G.;Dickinson-Anson, H.;Gage, F.H. https://doi.org/10.1523/JNEUROSCI.16-06-02027.1996
  17. Nat Neurosci v.2 Learning enhances adult neurogenesis in the hippocampal formation Gould, E.;Beylin, A.;Tanapat, P.;Reeves, A.;Shors, T.J. https://doi.org/10.1038/6365
  18. J Neurosci v.18 Experience- induced neurogenesis in the senescent dentate gyrus Kempermann, G.;Kuhn, H.G.;Gage, F.H. https://doi.org/10.1523/JNEUROSCI.18-09-03206.1998
  19. Nature v.410 Neurobiology: New memories from new neurons Macklis JD https://doi.org/10.1038/35066661
  20. Eur J Neurosci v.12 Mini-Review: In vivo neurogenesis in the adults brain: regulation and functional implications Fuchs, E.;Gould, E. https://doi.org/10.1046/j.1460-9568.2000.00130.x
  21. Proc Natl Acad Sci USA v.96 Running enhances neurogenesis, learning and long-term potentiation in mice van Praag, H.;Christie, B.R.;Sejnowski, T.J.;Gage, F.H. https://doi.org/10.1073/pnas.96.23.13427
  22. Nat Neurosci v.2 Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus van Praag, H.;Kempermann, G.;Gage, F.H. https://doi.org/10.1038/6368
  23. J Neurosci v.18 Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils Liu, J.;Solway, K.;Messing, R.O.;Sharp, F.R. https://doi.org/10.1523/JNEUROSCI.18-19-07768.1998
  24. J Neurosci v.17 Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus Parent, J.M.;Yu, T.W.;Leibowitz, R.T.;Geschwind, D.H.;Sloviter, R.S.;Lowenstein, D.H. https://doi.org/10.1523/JNEUROSCI.17-10-03727.1997
  25. Sci Med v.1 Selective inhibition of cyclooxygenase 2 Needleman, P.;Isakson, P.C.
  26. Annu Rev Pharmacol Toxicol v.38 Cyclooxygenases 1 and 2 Vane, J.R.;Bakhle, Y.S.;Botting, R.M. https://doi.org/10.1146/annurev.pharmtox.38.1.97
  27. Stroke v.29 Expression and vascular effects of cyclooxygenase-2 in brain Brian, J.E. Jr.;Moore, S.A.;Faraci, F.M. https://doi.org/10.1161/01.STR.29.12.2600
  28. Cancer Res v.57 Sulindac sulfone inhibits azoxymethane- induced colon carcinogenesis in rats without reducing prostaglandin levels Piazza, G.A.;Alberts, D.S.;Hixson, L.J.;Paranka, N.S.;Li, H.;Finn, T.;Bogert, C.;Guillen, J.M.;Brendel, K.;Gross, P.H.;Sperl, G.;Ritchie, J.;Burt, R.W.;Ellsworth, L.;Ahnen, D.J.;Pamukcu, R.
  29. Neurosci Lett v.308 Visceral antinociception produced by bee venom stimulation of the Zhongwan acupuncture point in mice: role of alpha(2) adrenoceptors Kwon, Y.B.;Kang, M.S.;Han, H.J.;Beitz, A.J.;Lee, J.H. https://doi.org/10.1016/S0304-3940(01)01989-9
  30. J Vet Med Sci v.65 Acupoint stimulation using bee venom attenuates formalin-induced pain behavior and spinal cord fos expression in rats Kim, H.W.;Kwon, Y.B.;Ham, T.W.;Roh, D.H.;Yoon, S.Y.;Lee, H.J.;Han, H.J.;Yang, I.S.;Beitz, A.J.;Lee, J.H. https://doi.org/10.1292/jvms.65.349
  31. Pain v.66 The bee venom test: a new tonic-pain test Lariviere, W.R.;Melzack, R. https://doi.org/10.1016/0304-3959(96)03075-8
  32. Am J Chin Med v.31 Acupuncture modulates expressions of nitric oxide synthase and c-Fos in hippocampus after transient global ischemia in gerbils Kang, J.E.;Lee, H.J.;Lim, S.;Kim, E.H.;Lee, T.H.;Jang, M.H.;Shin, M.C.;Lim, B.V.;Kim, Y.J.;Kim, C.J. https://doi.org/10.1142/S0192415X03001235
  33. Neurosci Lett v.297 Acupuncture increases cell proliferation in dentate gyrus after transient global ischemia in gerbils Kim, E.H.;Kim, Y.J.;Lee, H.J.;Huh, Y.;Chung, J.H.;Seo, J.C.;Kang, J.E.;Lee, H.J.;Yim, S.V.;Kim, C.J. https://doi.org/10.1016/S0304-3940(00)01656-6
  34. Pain v.52 The distribution of brain-stem and spinal cord nuclei associated with different frequencies of electroacupuncture analgesia Lee, J.H.;Beitz, A.J. https://doi.org/10.1016/0304-3959(93)90109-3
  35. Neuroreport v.5 C-fos expression in the hypothalamo-pituitary system induced by electroacupunc-ture or noxious stimulation Pan, B.;Castro-Lopes, J.M.;Coimbra, A. https://doi.org/10.1097/00001756-199408150-00027
  36. Radiology v.212 Central nervous pathway for acupuncture stimulation: localization of processing with functional MR imaging of the brain--preliminary experience Wu, M.T.;Hsieh, J.C.;Xiong, J.;Yang, C.F.;Pan, H.B.;Chen, Y.C.;Tsai, G.;Rosen, B.R.;Kwon, K.K. https://doi.org/10.1148/radiology.212.1.r99jl04133
  37. J Neurotrauma. v.7 Caspase pathways, neuronal apoptosis, and CNS injury Eldadah, B.A.;Faden, A.I.
  38. Neurochem Int v.35 Recent advances on neuronal caspases in development and neurodegeneration Marks, N.;Berg, M.J. https://doi.org/10.1016/S0197-0186(99)00061-3
  39. J Neurosci Res v.65 Multiple caspases are involved in beta-amyloid- induced neuronal apoptosis Allen, J.W.;Eldadah, B.A.;Huang, X.;Knoblach, S.M.;Faden, A.I. https://doi.org/10.1002/jnr.1126
  40. J Neurosci v.18 Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia Chen, J.;Nagayama, T.;Jin, K.;Stetler, R.A.;Zhu, R.L.;Graham, S.H.;Simon, R.P. https://doi.org/10.1523/JNEUROSCI.18-13-04914.1998
  41. Brain Res Mol Brain Res v.42 Focal cerebral ischaemia increases the levels of several classes of heat shock proteins and their corresponding mRNAs Wagstaff, M.J.;Collaco-Moraes, Y.;Aspey, B.S.;Coffin, R.S.;Harrison, M.J.;Latchman, D.S.;de Belleroche, J.S. https://doi.org/10.1016/S0169-328X(96)00127-1
  42. J Neurosci v.21 Specific caspase pathways are activated in the two stages of cerebral infarction Benchoua, A.;Guegan, C.;Couriaud, C.;Hosseini, H.;Sampaio, N.;Morin, D.;Onteniente, B.
  43. J Clin Invest v.101 Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury Cheng, Y.;Deshmukh, M.;D'Costa, A.;Demaro, J.A.;Gidday, J.M.;Shah, A.;Sun, Y.;Jacquin, M.F.;Johnson, E.M.;Holtzman, D.M. https://doi.org/10.1172/JCI2169
  44. Arch Pharm Res v.26 Inhibition of COX-2 activity and proinflammatory cytokines (TNF-alpha and IL-1beta) production by water-soluble sub-fractionated parts from bee(Apis mellifera) venom Nam, K.W.;Je, K.H.;Lee, J.H.;Han, H.J.;Lee, H.J.;Kang, S.K.;Mar, W. https://doi.org/10.1007/BF02976695