DOI QR코드

DOI QR Code

Pt/Al Reaction Mechanism in the FeRAM Device Integration

FeRAM 소자 제작 중에 발생하는 Pt/Al 반응 기구

  • Cho Kyoung-Won (Department of Materials Science & Engineering/Nano Technology Lab., Chungju National University) ;
  • Hong Tae-Whan (Department of Materials Science & Engineering/Nano Technology Lab., Chungju National University) ;
  • Kweon Soon-Yong (Department of Materials Science & Engineering/Nano Technology Lab., Chungju National University) ;
  • Choi Si-Kyong (Department of Materials Science & Engineering, Korea Advanced Institute of Science and Technology)
  • 조경원 (충주대학교 신소재공학과/나노기술연구소) ;
  • 홍태환 (충주대학교 신소재공학과/나노기술연구소) ;
  • 권순용 (충주대학교 신소재공학과/나노기술연구소) ;
  • 최시경 (한국과학기술원 신소재공학과)
  • Published : 2004.10.01

Abstract

The capacitor contact barrier(CCB) layers have been introduced in the FeRAM integration to prevent the Pt/Al reaction during the back-end processes. Therefore, the interdiffusion and intermetallic formation in $Pt(1500{\AA})/Al(3000{\AA})$ film stacks were investigated over the annealing temperature range of $100\sim500^{\circ}C$. The interdiffusion in Pt/Al interface started at $300^{\circ}C$ and the stack was completlely intermixed after annealing over $400^{\circ}C$ in nitrogen ambient for 1 hour. Both XRD and SBM analyses revealed that the Pt/Al interdiffusion formed a single phase of $RtAl_2$ intermetallic compound. On the other hand, in the presence of TiN($1000{\AA}$) barrier layer at the Pt/Al interface, the intermetallic formation was completely suppressed even after the annealing at $500^{\circ}C$. These were in good agreement with the predicted effect of the TiN diffusion barrier layer. But the conventional TiN CCB layer could not perfectly block the Pt/Al reaction during the back-end processes of the FeRAM integration with the maximum annealing temperature of $420^{\circ}C$. The difference in the TiN barrier properties could be explained by the voids generated on the Pt electrode surface during the integration. The voids were acted as the starting point of the Pt/Al reaction in real FeRAM structure.

References

  1. S. Y. Kweon, N. K. Kim, E. S. Choi, S. J. Yeom, J. S. Roh and Y. J. Park, Jpn. J. Appl. Phys. Part 1, 41, 7327 (2002) https://doi.org/10.1143/JJAP.41.7327
  2. B. Yang, Y. M. Kang, S. S. Lee, K. H. Noh, S. W. Lee, N. K. Kim, S. Y. Kweon, S. J. Yeom and Y. J. Park, IEEE Electron Device Lett., 23, 743 (2002) https://doi.org/10.1109/LED.2002.806299
  3. S. H. Oh, S. K. Hong, K. H. Noh, S. Y. Kweon, N. K. Kim, Y. H. Yang, J. G. Kim, J. Y. Seong, I. W. Jang, S. H. Park, K. H. Bang, K. N. Lee, H. J. Jung, J. H. Son, S. S. Lee, E. S. Choi, H. J. Sun, S. J. Yeom, K. D. Ban, J. W. Park, G. D. Park, S. Y. Song, J. H. Shin, S. I. Lee and Y. J. Park, IEEE International Electron Device Meeting 2003 (IEDM 2003), December 8-10, (2003) Washington, D. C., USA
  4. W. W. Jung, S. K. Choi, S. Y. Kweon and S. J. Yeom, Appl. Phys. Lett., 83, 2160 (2003) https://doi.org/10.1063/1.1610809
  5. H. J. Sun, E. S. Choi, T. K. Lee, T. E. Hong, J. M. Yang, S. Y. Kweon, N. K. Kim, S. J. Yeom, J. S. Roh, H. C. Sohn and J. W. Kim, Jpn. J. Appl. Phys. Part 1, 43, 2651 (2004) https://doi.org/10.1143/JJAP.43.2651
  6. Chin-An Chang, J. Appl. Physics, 52, 4620 (1987) https://doi.org/10.1063/1.329341
  7. Chin-An Chang, J. Appl. Physics, 61, 1864 (1987) https://doi.org/10.1063/1.338031
  8. E. G. Colgan, J. Appl. Physics, 62, 1224 (1987) https://doi.org/10.1063/1.339673
  9. S. Y. Kweon, S. J. Yeom, S. K. Lee, Y. S. Yu, D. S. Pyun and C. T. Kim, Integrated Ferroelectrics, 31, 251 (2000) https://doi.org/10.1080/10584580008215658
  10. P. Gas, J. Labar, G. Clugnet, A. Kovacs, C. Bergman and P. Barna, J. Appl. Physics, 90, 3899 (2001) https://doi.org/10.1063/1.1403682
  11. J. Labor and P. Gas, J. Appl. Physics, 90, 6545 (2001) https://doi.org/10.1063/1.1417987
  12. S. Y. Kweon, S. J. Yeom, H. J. Sun, N. K. Kim, Y. S. Yu and S. K. Lee, Integrated Ferroelectrics, 25, 299 (1999)
  13. W. S. Yang, S. J. Yeom, N. K. Kim, S. Y. Kweon and J. S. Roh, Jpn. J. Appl. Phys. Part 1, 39, 5465 (2000) https://doi.org/10.1143/JJAP.39.5465

Cited by

  1. Structural Phase Transformations in Al/Pt Bilayer Thin Films during the Solid-State Reaction vol.60, pp.7, 2018, https://doi.org/10.1134/S106378341807003X