DOI QR코드

DOI QR Code

The Effect of Reaction Conditions on the Preparation of Ni Powder Using Wet Chemical Reduction Process

습식 환원법에 의한 Ni 분말 합성시 반응조건의 영향

  • Kim Dong-Hyun (School of Materials Science and Engineering, Pusan National University) ;
  • Park Young-Min (School of Materials Science and Engineering, Pusan National University) ;
  • Kim Yi-Joong (School of Materials Science and Engineering, Pusan National University) ;
  • Jin Hyeong-Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Park Hong-Chae (School of Materials Science and Engineering, Pusan National University) ;
  • Yoon Seog-Young (School of Materials Science and Engineering, Pusan National University)
  • Published : 2004.10.01

Abstract

Nickel ultrafine powder have been synthesized by chemical reduction of aqueous $NiSO_4$ with hydrazine at various reaction conditions. The effect of reaction conditions such as the amount of surfactant and reductor, and reaction temperature on the particle size and shape was investigated by the mean of XRD, SEM and SEM-PSA. Experiments showed that the ratio of $N_{2}H_4/Ni$ and the reaction temperature were affected on the particle size of the nickel powder. The average particle size of synthesized nickel powder increased with increasing reaction temperature regardless of the ratio of $N_{2}H_4/Ni$. Also the surfactant could influence the size and agglomeration of ultrafine powder with the reaction temperature.

References

  1. W. J. Tseng and S. Y. Lin, Mater. Sci. Eng., A362, 160 (2003) https://doi.org/10.1016/S0921-5093(03)00618-X
  2. S. H. Park, C. H. Kim, Y. C. Kang and Y. H. Kim, J. Mater. Sci. Lett., 22, 1537 (2003) https://doi.org/10.1023/A:1026290801907
  3. H. Shoji, Y. Nakano, H. Matsushita, A. Onoe, H. Kanai and Y. Yamashita, J. Mater. Syn. Precess., 6, 415 (1998) https://doi.org/10.1023/A:1021885006938
  4. J. M. Herbrt, Trans. Br. Ceramic. Soc., 62(8), 645(1963)
  5. J. M. Herbrt, Proc. IEEE., 112(7), 144 (1965)
  6. J. Yamamatsu, N. Kawano, T. Arashi, A. Sato, Y. Nakano and T. Nomura, J. of Powder Sources., 60, 199 (1996) https://doi.org/10.1016/S0378-7753(96)80011-5
  7. A. Degen and J. Macek, Nanostruct. Mater., 12, 225 (1999) https://doi.org/10.1016/S0965-9773(99)00104-X
  8. S. Tamir and S. Berger, Thin Solid Films., 276, 108 (1996) https://doi.org/10.1016/0040-6090(95)08114-3
  9. R. A. Crane, L. C. Chao and R. P. Andres, Master. Res. Soc. Sympo. Proc., 368, 127 (1995)
  10. S. Che, O, Sakurai, T. Yasuda, K. Shinzaki and N. Mizutami, J. Ceram. Soc. Jpn., 105, 269 (1997) https://doi.org/10.2109/jcersj.105.269
  11. C. D. Saguesa, R. H. Urbina and M. Figlarz, Solid State Ionics., 63, 25, (1993) https://doi.org/10.1016/0167-2738(93)90081-D
  12. R. Ueyama, T. Ueyama, K. Koumoto, J. Ceram. Soc. of Japan., 110(4), 329 (2002) https://doi.org/10.2109/jcersj.110.329
  13. F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin and M. Figlarz, Solid State Ionics., 32-33, 198 (1989) https://doi.org/10.1016/0167-2738(89)90222-1
  14. C. Ducamp-Sanguesa, R. Herrera-Urbina and M. Figlarz, J. Solid State Chem., 100, 272(1992) https://doi.org/10.1016/0022-4596(92)90101-Z
  15. K. Yu, D. J. Kim, H. S. Chung and H. Liang, Materials Letter., 57, 3992 (2003) https://doi.org/10.1016/S0167-577X(03)00253-2
  16. Y. D. Li, C. W. H. R. Wang, L. Q. Li and Y. T. Qian, Mater. Chem. & Phys., 59, 88 (1999) https://doi.org/10.1016/S0254-0584(99)00015-2
  17. V. K. LaMer and R. H. Dinger, J. Am. Chem. Soc., 72, 4847-4854 (1950) https://doi.org/10.1021/ja01167a001
  18. I. Statake and I. Iwamatsu, Bull. Chem. Soc. Jpn., 36, 204 (1962) https://doi.org/10.1246/bcsj.36.204
  19. R. Piassa, G. Pietro, Europhys. Lett., 28, 445 (1994) https://doi.org/10.1209/0295-5075/28/6/012
  20. M. P. Aroson, Lanngmuir., 5, 494 (1989) https://doi.org/10.1021/la00086a036
  21. J. R. Anderson, Structure of Metallic Catalysts, Avademic Press, New York, 1975
  22. J. B. Hayter and J. Lenfold, Colloid Polym. Sci., 261, 1022 (1983) https://doi.org/10.1007/BF01421709