DOI QR코드

DOI QR Code

Synthesis of CuInSe2 Nanoparticles by Solvothermal Method

용매열법을 이용한 CuInSe2 나노 입자 합성

  • Kim Ki-Hyun (Solar Cells Research Center, Korea Institute of Energy Research, Department of Inorganic Materials Engineering, Kyungpook National University) ;
  • Chun Young-Gab (Solar Cells Research Center, Korea Institute of Energy Research) ;
  • Park Byung-Ok (Department of Inorganic Materials Engineering, Kyungpook National University) ;
  • Yoon Kyung-Hoon (Solar Cells Research Center, Korea Institute of Energy Research)
  • 김기현 (한국에너지기술연구원, 태양전지연구센터, 경북대학교 무기재료공학과) ;
  • 전영갑 (한국에너지기술연구원, 태양전지연구센터) ;
  • 박병옥 (경북대학교 무기재료공학과) ;
  • 윤경훈 (한국에너지기술연구원, 태양전지연구센터)
  • Published : 2004.10.01

Abstract

$CuInSe_2$ (CIS) nanoparticles of chalcopyrite structure were directly synthesized by a solvothemal method in an autoclave with diethylamine as a solvent. A morphology change of the nanoparticles was observed as a function of reaction temperatures and times. Dense rod-type CIS nanoparticles with width of $5\sim10mm$ and length in the range of 30-80 nm were obtained at $180^{\circ}C$ for 36 hrs whereas spherical particles with diameter in the range of 5-10 nm were observed at $250^{\circ}C$ for 36 hrs. The formation of the rod-like nanoparticles in diethylamine, without double N-chelation, was explained by the Solution-Liquid-Solid (SLS) mechanism.

References

  1. A. H. Moharram, M. M. Hafiz and A. Salem, Applied Surface Science, 172, 61 (2001) https://doi.org/10.1016/S0169-4332(00)00836-9
  2. T. Nakada, T. Kume and A. Kunioka, Solar Energy Materials and Solar Cells, 50, 97 (1998) https://doi.org/10.1016/S0927-0248(97)00128-1
  3. A. H. Moharram, M. M. Hafiz and A. Salem, Solar Energy Materials and Solar Cells, 53, 385 (1998) https://doi.org/10.1016/S0927-0248(98)00039-7
  4. A. Parretta, M.. L. Addonizio, S. Loreti, L. Quercia and M. K. Jauaraj, J. of Crystal Growth, 183, 196 (1998) https://doi.org/10.1016/S0022-0248(97)00406-5
  5. P. K. Vidyadharan Pillai and K. P. Vijayakumar, Solar Energy Energy Materials and Solar Cells, 51, 47 (1998) https://doi.org/10.1016/S0927-0248(97)00207-9
  6. Akhlesh Gupta and S. Isomura, Solar Energy Materials and Solar Cells, 53, 385 (1998) https://doi.org/10.1016/S0927-0248(98)00039-7
  7. D. L. Schulz, C. J. Curtis, A. Cram, J. L. Alleman, A. Mason, R. J. Matson, J. D. Perkins and D. S. Ginley, Journal of Electronic Materials, 27(5), 433 (1998) https://doi.org/10.1007/s11664-998-0173-5
  8. K. T. Ramakrishna Reddy and R. B. V. Chalapathy, Solar Energy Materials and Solar Cells, 50, 19 (1998) https://doi.org/10.1016/S0927-0248(97)00096-2
  9. Yang Jiang, Yue Wu, Shengwen and Bo Xie, Journal of materials Reserch, 16(10), 2805 (2001) https://doi.org/10.1557/JMR.2001.0386
  10. Yang Jiang, Yue Wu, Xiao Mo, weichao Yu, Yi Xie, and Yitai Qian, Inorg. Chem., 39, 2964 (2000) https://doi.org/10.1021/ic000126x
  11. Bin Li, Yi Xie, Jiaxing Huang and Yitai Qian, Adv. Mater. 11(17), 1456 (1999) https://doi.org/10.1002/(SICI)1521-4095(199912)11:17<1456::AID-ADMA1456>3.0.CO;2-3
  12. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons and W. E. Buhro, Science, 207(15), December, 1791 (1995)
  13. Yang Jiang, Yue Wu, Xiao Mo, weichao Yu, Yi Xie, and Yitai Qian, Inorg. Chem., 39, 2964 (2000) https://doi.org/10.1021/ic000126x