A Study on the Conditional Survival Function with Random Censored Data

  • Published : 2004.05.31

Abstract

In the analysis of cancer data, it is important to make inferences of survival function and to assess the effects of covariates. Cox's proportional hazard model(PHM) and Beran's nonparametric method are generally used to estimate the survival function with covariates. We adjusted the incomplete survival time using the Buckley and James's(1979) pseudo random variables, and then proposed the estimator for the conditional survival function. Also, we carried out the simulation studies to compare the performances of the proposed method.