Thermal Decomposition Kinetics of Copolymers Derived from p-dioxanone, L-lactide and Poly(ethylene glycol)

  • Bhattarai Narayan (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Khil Myung Seob (Department of Textile Engineering, Chonbuk National University) ;
  • Oh Seung Jin (Department of Textile Engineering, Chonbuk National University) ;
  • Kim Hak Yong (Department of Textile Engineering, Chonbuk National University) ;
  • Kim Kwan Woo (Department of Bionano System Engineering, Chonbuk National University)
  • Published : 2004.12.01

Abstract

The kinetic parameters, including the activation energy E, the reaction order n, and the pre-exponential factor Z, of the degradation of the copolymers based on the poly(L-lactide) (PLLA) or poly(p-dioxanone-co-L-lactide) (PDO/PLLA) and diol-terminated poly(ethylene glycol) (PEG) segments have been evaluated by the single heating methods of Friedman and Freeman-Carroll. The experimental results showed that copolymers exhibited two degradation steps under nitrogen that can be ascribed to PLLA or PDO/PLLA and PEG segments, respectively. However, copolymers exhibited almost single degradation step in air. Although the values of initial decomposition temperature were scattered, copolymers showed the lower maximum weight loss rate and degradation-activation energy in air than in nitrogen whereas the higher value of temperature at the maximum rate of weight loss was observed in air.

References

  1. N. Bhattarai, H. Y. Kim, D. R. Kim, and S. J. Park, J. Polym. Int., 52, 6 (2003) https://doi.org/10.1002/pi.923
  2. N. Saito, T. Okada, H. Horiuchi, N. Marakami, J. Takahashi, M. Nawata, H. Ota, K. Nozaki, and K. Takaoka, Nature Biotechnology, 19, 332 (2001) https://doi.org/10.1038/86715
  3. E. S. Lipinsky, R. G. Sindair, and J. D. Browning, US Patent, 5,767,222 (1993)
  4. T. C. Forschner, PCT Int Wo, 9721753 Al (1997)
  5. M. Ranchandani, M. Pankaskie, and D. Robinson, J. Controlled Release, 43, 161 (1997) https://doi.org/10.1016/S0168-3659(96)01481-2
  6. M. S. Widmer, P. K. Gupta, L. C. Lu, R. K. Meszlenyi, G. R. Evans, K. Brandt, T. Savelt, A. Gurlek, C. W. Patrick, and A. G. Mikos, Biomaterials, 19, 1945 (1998) https://doi.org/10.1016/S0142-9612(98)00099-4
  7. S. Gogolewski and P. Mainil-Vailet, Biomaterials, 18, 251 (1997) https://doi.org/10.1016/S0142-9612(96)00132-9
  8. C. M. Agrawal, D. Huang, J. P. Schmitz, and K. A. Athanasiou, Tissue Eng., 3, 345 (1997) https://doi.org/10.1089/ten.1997.3.345
  9. H. Nishida, M. Yamashira, N. Hattori, T. Endo, and Y. Tokiwa, Polym. Degrad. Stab., 70, 485 (2000) https://doi.org/10.1016/S0141-3910(00)00145-2
  10. N. Bhattarai, H. Y. Kim, and D. R. Lee, Polym. Degrad. Stab., 78, 423 (2002) https://doi.org/10.1016/S0141-3910(02)00178-7
  11. H. L. Friedman, J. Polym. Sci. C., 6, 183 (1964)
  12. E. S. Freeman and B. Carroll, J. Phys. Chem., 62, 394 (1958) https://doi.org/10.1021/j150562a003
  13. W. L. Chang, J. Appl. Polym. Sci., 53, 1759 (1994) https://doi.org/10.1002/app.1994.070531306
  14. J. H. Flynn and L. A. Wall, J. Polym. Sci. B, 4, 323 (1966) https://doi.org/10.1002/pol.1966.110040504
  15. P. K. Chaterjee and C. M. Conrad, J. Polym. Sci. A-l, 6, 594 (1968)
  16. H. H. Horowitz and G. Metzger, Anal. Chem., 35, 1464 (1963) https://doi.org/10.1021/ac60203a013
  17. H. E. Kissinger, Anal. Chem., 29, 1702 (1957) https://doi.org/10.1021/ac60131a045
  18. A. W. Coats and J. P. Redfern, Nature, 201, 68 (1964) https://doi.org/10.1038/201068a0
  19. D. W. Van Krevelen, C. Van Heerden, and F. J. Huntjens, Fuel, 30, 11 (1951)
  20. L. Reich, J. Polym. Sci. Polym. Lett. Ed., 2, 621 (1964) https://doi.org/10.1002/pol.1964.110020611
  21. T. Ozawa, Bull. Chem. Soc. Jpn., 38, 1881 (1965) https://doi.org/10.1246/bcsj.38.1881
  22. F. D. Kopinke, M. Remmler, M. Moder, and O. Wachsen, Polym. Degd. Stab., 53, 329 (1996) https://doi.org/10.1016/0141-3910(96)00102-4
  23. X. G. Li, M. R. Huang, G. H. Guan, and T. S. Angew, Macromol. Chem., 227, 69 (1995) https://doi.org/10.1002/apmc.1995.052270108
  24. M. S. Eroglu, B. Hazer, O. Guven, and B. M. Baysal, J. Appl. Polym. Sci., 60, 2141 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960620)60:12<2141::AID-APP11>3.0.CO;2-A
  25. S. Han, C. Kim, and D. Kwon, Polymer, 38, 317(1997) https://doi.org/10.1016/S0032-3861(97)88175-X
  26. E. Bortel, S. Hodorowiez, and R. Lamot, Macromol. Chem., 180, 2491 (1979) https://doi.org/10.1002/macp.1979.021801023
  27. J. Scheirs, S. W. Bigger, and O. Delatycki, Eur. Polym. J., 27, 1111 (1997) https://doi.org/10.1016/0014-3057(91)90089-7
  28. I. C. McNeil and H. A. Leiper, Polym. Degrad. Stab., 11, 267 (1985) https://doi.org/10.1016/0141-3910(85)90050-3
  29. D. M. Cam and M. Marucci, Polymer, 38, 1879 (1997) https://doi.org/10.1016/S0032-3861(96)00711-2
  30. L. Abate, S. Calanna, A. Pollicino, and A. Recca, Polym. Eng. Sci., 36, 1782 (1996) https://doi.org/10.1002/pen.10573
  31. A. K. Mukerjee and M. J. Patri, J. Macromol. Sci. Chem., A26, 213 (1989)
  32. X. G. Li, M. R. Huang, G. H. Guan, and T. Sun, Polym. Int., 46, 289 (1999) https://doi.org/10.1002/(SICI)1097-0126(199808)46:4<289::AID-PI993>3.0.CO;2-O