Thermal Decomposition Kinetics of Copolymers Derived from p-dioxanone, L-lactide and Poly(ethylene glycol)

  • Bhattarai Narayan (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Khil Myung Seob (Department of Textile Engineering, Chonbuk National University) ;
  • Oh Seung Jin (Department of Textile Engineering, Chonbuk National University) ;
  • Kim Hak Yong (Department of Textile Engineering, Chonbuk National University) ;
  • Kim Kwan Woo (Department of Bionano System Engineering, Chonbuk National University)
  • Published : 2004.12.01


The kinetic parameters, including the activation energy E, the reaction order n, and the pre-exponential factor Z, of the degradation of the copolymers based on the poly(L-lactide) (PLLA) or poly(p-dioxanone-co-L-lactide) (PDO/PLLA) and diol-terminated poly(ethylene glycol) (PEG) segments have been evaluated by the single heating methods of Friedman and Freeman-Carroll. The experimental results showed that copolymers exhibited two degradation steps under nitrogen that can be ascribed to PLLA or PDO/PLLA and PEG segments, respectively. However, copolymers exhibited almost single degradation step in air. Although the values of initial decomposition temperature were scattered, copolymers showed the lower maximum weight loss rate and degradation-activation energy in air than in nitrogen whereas the higher value of temperature at the maximum rate of weight loss was observed in air.


  1. N. Bhattarai, H. Y. Kim, D. R. Kim, and S. J. Park, J. Polym. Int., 52, 6 (2003)
  2. N. Saito, T. Okada, H. Horiuchi, N. Marakami, J. Takahashi, M. Nawata, H. Ota, K. Nozaki, and K. Takaoka, Nature Biotechnology, 19, 332 (2001)
  3. E. S. Lipinsky, R. G. Sindair, and J. D. Browning, US Patent, 5,767,222 (1993)
  4. T. C. Forschner, PCT Int Wo, 9721753 Al (1997)
  5. M. Ranchandani, M. Pankaskie, and D. Robinson, J. Controlled Release, 43, 161 (1997)
  6. M. S. Widmer, P. K. Gupta, L. C. Lu, R. K. Meszlenyi, G. R. Evans, K. Brandt, T. Savelt, A. Gurlek, C. W. Patrick, and A. G. Mikos, Biomaterials, 19, 1945 (1998)
  7. S. Gogolewski and P. Mainil-Vailet, Biomaterials, 18, 251 (1997)
  8. C. M. Agrawal, D. Huang, J. P. Schmitz, and K. A. Athanasiou, Tissue Eng., 3, 345 (1997)
  9. H. Nishida, M. Yamashira, N. Hattori, T. Endo, and Y. Tokiwa, Polym. Degrad. Stab., 70, 485 (2000)
  10. N. Bhattarai, H. Y. Kim, and D. R. Lee, Polym. Degrad. Stab., 78, 423 (2002)
  11. H. L. Friedman, J. Polym. Sci. C., 6, 183 (1964)
  12. E. S. Freeman and B. Carroll, J. Phys. Chem., 62, 394 (1958)
  13. W. L. Chang, J. Appl. Polym. Sci., 53, 1759 (1994)
  14. J. H. Flynn and L. A. Wall, J. Polym. Sci. B, 4, 323 (1966)
  15. P. K. Chaterjee and C. M. Conrad, J. Polym. Sci. A-l, 6, 594 (1968)
  16. H. H. Horowitz and G. Metzger, Anal. Chem., 35, 1464 (1963)
  17. H. E. Kissinger, Anal. Chem., 29, 1702 (1957)
  18. A. W. Coats and J. P. Redfern, Nature, 201, 68 (1964)
  19. D. W. Van Krevelen, C. Van Heerden, and F. J. Huntjens, Fuel, 30, 11 (1951)
  20. L. Reich, J. Polym. Sci. Polym. Lett. Ed., 2, 621 (1964)
  21. T. Ozawa, Bull. Chem. Soc. Jpn., 38, 1881 (1965)
  22. F. D. Kopinke, M. Remmler, M. Moder, and O. Wachsen, Polym. Degd. Stab., 53, 329 (1996)
  23. X. G. Li, M. R. Huang, G. H. Guan, and T. S. Angew, Macromol. Chem., 227, 69 (1995)
  24. M. S. Eroglu, B. Hazer, O. Guven, and B. M. Baysal, J. Appl. Polym. Sci., 60, 2141 (1996)<2141::AID-APP11>3.0.CO;2-A
  25. S. Han, C. Kim, and D. Kwon, Polymer, 38, 317(1997)
  26. E. Bortel, S. Hodorowiez, and R. Lamot, Macromol. Chem., 180, 2491 (1979)
  27. J. Scheirs, S. W. Bigger, and O. Delatycki, Eur. Polym. J., 27, 1111 (1997)
  28. I. C. McNeil and H. A. Leiper, Polym. Degrad. Stab., 11, 267 (1985)
  29. D. M. Cam and M. Marucci, Polymer, 38, 1879 (1997)
  30. L. Abate, S. Calanna, A. Pollicino, and A. Recca, Polym. Eng. Sci., 36, 1782 (1996)
  31. A. K. Mukerjee and M. J. Patri, J. Macromol. Sci. Chem., A26, 213 (1989)
  32. X. G. Li, M. R. Huang, G. H. Guan, and T. Sun, Polym. Int., 46, 289 (1999)<289::AID-PI993>3.0.CO;2-O