DOI QR코드

DOI QR Code

Two Back Stress Hardening Models in Rate Independent Rigid Plasticity

변형률 독립 강소성 구성 방정식에서의 이중 후방 응력 경화 모델

  • Published : 2005.07.01

Abstract

In the present work, the two back stress kinematic hardening models are proposed by combining Armstrong-Frederick, Phillips and Ziegler's hardening rules. Simple combination of hardening rules using simple rule of mixtures results in various evolutions of the kinematic hardening parameter. Using the combined hardening models the ultimate back stress fur the present models is also derived. The stress rate is co-rotated with respect to the spin of substructure due to the assumption of kinematic hardening rule in finite deformation regime. The work piece under consideration is assumed to consist of the elastic and the rigid plastic deformation zone. Then, the J2 deformation theory is facilitated to characterize the plastic deformation behavior under various loading conditions. The plastic deformation localization behaviors strongly depend on the constitutive description namely back stress evolution and its hardening parameters. Then, the analysis for Swift's effects under the fixed boundaries in axial directions is carried out using simple shear deformation.

References

  1. E. C. Aifantis, 1987, The Physics of Plastic Deformation, Int. J. Plast., Vol. 3, pp. 211-247 https://doi.org/10.1016/0749-6419(87)90021-0
  2. H. M. Zbib, E. C. Aifantis, 1988, On the Localization and Post-localization Behavior of Plastic Deformation I On the Initiation of Shear Bands, Res. Mech., Vol. 23, pp. 261-277
  3. J. Ning, E. C. Aifantis, 1994, On anisotropic finite deformation plasticity II. A two-component model, Acta Mech., Vol. 106, pp. 73-85 https://doi.org/10.1007/BF01300945
  4. J. E. Paulun, R. B. Pecherski, 1992, On the relation for plastic spin, Arch. Appl. Mech., Vol. 62, pp. 376-385 https://doi.org/10.1007/BF00804598
  5. E. H. Lee, 1984, Finite Deformation Effects in Plasticity Analysis, Numerical Analysis of forming Processes, Ed. J. F. Pittman, O. C. Zienkiewicz, R. D. Wood and J. M. Alexander, John Wiley & Sons Ltd., pp. 373-391
  6. Y. F. Dafalias, 1982, A Missing Link in the Macroscopic Constitutive formulation of Large Plastic Deformation, Plasticity today, Modeling, Methods and Application, Proc. Int. Symp. On Current Trends and Results in Plasticity, CISM, Udine Italy, pp. 135-151
  7. Y. F. Dafalias, 1983, Corotational Rates for Kinematic hardening at Large Plastic Deformation, J. App. Mech., Vol. 50, pp. 561-565 https://doi.org/10.1115/1.3167091
  8. J. K. Dienes, 1979, On the Analysis of Rotation and Stress Rate in Deforming Bodies, Acta Mech., Vol. 32, pp. 217-232 https://doi.org/10.1007/BF01379008
  9. J. E. Paulun, R. B. Pecherski, 1985, Study of corotational rates for kinematic hardening in finite deformation plasticity, Arch. Mech., Vol. 37, No. 6, pp.661-677
  10. J. E. Paulun, R. B. Pecherski, 1987, On the application of the plastic spin concept for the description of anisotropic hardening in finite deformation plasticity, Int. J. Plas., Vol. 3, pp. 303-314 https://doi.org/10.1016/0749-6419(87)90006-4
  11. B. Loret, 1983, On the effects of plastic rotation in the finite deformation of anisotropic elasoplastic materials, Mech. Mat., Vol. 2, pp, 287-304 https://doi.org/10.1016/0167-6636(83)90021-2
  12. Z. Mroz, H. P. Shrivastava, R. N. Dubey, 1976, A Non-Linear Hardening Model and Its Application to Cyclic loading, Acta Mech., Vol. 25, pp. 51-61 https://doi.org/10.1007/BF01176929
  13. J. L. Chaboche, 1986, Time-Independent Constitutive Theories for Cyclic Plasticity, Int. J. Plas., Vol. 2, pp. 149-188 https://doi.org/10.1016/0749-6419(86)90010-0
  14. A. Phillips, J. L. Tang, M. Ricciuti, 1974, Some New Observation on Yield Surfaces, Acta Mech., Vol. 20, pp. 23-39 https://doi.org/10.1007/BF01374960
  15. A. Phillips, C. W. Lee, 1979, Yield Surfaces and Loading Surfaces Experiments and Recommendations, Int. J. Sol. Struc., Vol. 15, pp. 715-729 https://doi.org/10.1016/0020-7683(79)90069-6
  16. A. Khan, S. Huang, 1995, Continuum Theory of Plasticity, John Wiley & Sons. Inc., New York, pp. 215-229
  17. Z. Guo, O. Watanabe, 1995, Effects of Hypoelastic Model and Plastic Hardening on Numerical Simulation, JSME Int. J., pp. 531-540
  18. M. F. Shi, J. C. Gerdeen, E. C.Aifantis, 1993, On finite deformation plasticity with directional softening Part II. Two-component model, Acta Mech., Vol. 101, pp. 69-80 https://doi.org/10.1007/BF01175598
  19. M. Kuroda, 1996, Roles of Plastic Spin in Shear banding, Int. J. PIas., Vol. 12, No.5, pp. 671-693
  20. M. Kuroda, 1995, Plastic spin associated with a comer theory of plasticity, Int. J. Plas., Vol. 11, No.5, pp. 547-570 https://doi.org/10.1016/S0749-6419(95)00021-6
  21. J. Ning, E. C. Aifantis, 1994, I, On anisotropic finite deformation plasticity Part I. A two-back stress model, Acta Mech., Vol. 106, pp. 55-72 https://doi.org/10.1007/BF01300944
  22. S. Kobayashi, S. I. Oh, T. Altan, 1989, Metal Forming and the Finite Element Method, Oxford Press Inc., New York, pp. 84-110
  23. M. A. Crisfield, 1997, Non-linear Finite Element Analysis of Solids and Structure, John Wiley & Sons Ltd., West Sussex, England, Vol. 2, pp. 46-55
  24. 이병섭, 황두순, 윤수진, 홍성인, 1999, 이동경화를 고려한 좌굴 및 소성 불안정성 유동에 관한 연구, 한국소성가공학회 1999년도 춘계학술대회 논문집, pp. 98-101
  25. 황두순, 이병섭, 이용성, 윤수진, 홍성인, 재료의 특징에 따른 국분화에 대한 수치해석적 연구, 한국소성가공학회, 제9권, 제4호, pp. 395-403
  26. J. C. Christoffersen, J. W. Hutchinson, 1979, A Class of Phenomenological Comer Theories of Plasticity, J. Mech. Phys. Solids, Vol. 27, pp. 465-487 https://doi.org/10.1016/0022-5096(79)90026-7
  27. Y. F. Dafalias, 1985, The Plastic Spin, J. Appl. Mech., Vol. 52, pp. 865-871 https://doi.org/10.1115/1.3169160