Cytochrome $C_{550}$ is Related to Initiation of Sporulation in Bacillus subtilis

  • Shin Inji (Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University) ;
  • Ryu Han-Bong (Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University) ;
  • Yim Hyung-Soon (Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University) ;
  • Kang Sa-Ouk (Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University)
  • Published : 2005.06.01


The effect of cytochrome $c_{550}$ encoded by cccA in Bacillus subtilis during the event of sporulation was investigated. The sporulation of cccA-overexpressing mutant was significantly accelerated, while disruptant strain showed delayed sporulation in spite of the same growth rate. Activity of sporulation stage-0-specific enzyme, extracellular $\alpha-amylase$ of mutant strains was similar to that of the control strain, but cccA-overexpressing mutant exhibited higher activity of stage-II-specific alkaline phosphatase and stage-III-specific glucose dehydrogenase when compared to deletion mutant and control strain. Northern blot analysis also revealed that cccA-overexpressing mutant showed high level of spo0A transcripts, while the disruptant rarely expressed spo0A. These results suggested that although cytochrome $c_{550}$ is dispensable for growth and sporulation, expression of cccA may play an important role for initiation of sporulation through regulation of spo0A expression.


  1. Akrigg, A. 1978. Purification and properties of a manganese-stimulated deoxyribonuclease produced during sporulation of Bacillus subtilis. Biochem. J. 172, 69-76
  2. Akrigg, A. and J. Mandelstam. 1978. Extracellular manganesestimulated deoxyribonuclease as a marker event in sporulation of Bacillus subtilis. Biochem. J. 172, 63-67
  3. Barker, P.D. and S.J. Ferguson. 1999. Still a puzzle: why is haem covalently attached in c-type cytochromes? Structure Fold. Des. 7, R281-290
  4. Bengtsson, J., C. Rivolta, L. Hederstedt, and D. Karamata. 1999. Bacillus subtilis contains two small c-type cytochromes with homologous heme domains but different types of membrane anchors. J. Biol. Chem. 274, 26179-26184
  5. Burbulys, D., K.A. Trach, and J.A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64, 545-552
  6. Burkholder, W.F. and A.D. Grossman. 2000. Regulation of the initiation of endospore formation in Bacillus subtilis, p. 151-166. In L.V. Brun and L.J. Shimkets (eds.), Prokaryotic Development. American Society for Microbiology, Washington, D.C
  7. Davidson, V.L. and M.A. Kumar. 1989. Cytochrome c550 mediates electron transfer from inducible periplasmic c-type cytochromes to the cytoplasmic membrane of Paracoccus denitrificans. FEBS Lett. 245, 271-273
  8. Deuerling, E., A. Mogk, C. Richter, M. Purucker, and W. Schumann. 1997. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Mol. Microbiol. 23, 921-933
  9. Dubnau, D. and R. Davidoff-Abelson. 1971. Fate of transforming DNA following uptake by competent Bacillus subtilis, I. Formation and properties of the donor-recipient complex. J. Mol. Biol. 56, 209-221
  10. Felix, J.A. and D.G. Lundgren. 1973. Electron transport system associated with membranes of Bacillus cereus during vegetative growth and sporulation. J. Bacteriol. 115, 552-559
  11. Fujita M., J.E. Gonzalez-Pastor, and R. Losick. 2005. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J. Bacteriol. 187, 1357-1368
  12. Fujita, Y., R. Ramaley, and E. Freese. 1977. Location and properties of glucose dehydrogenase in sporulating cells and spores of Bacillus subtilis. J. Bacteriol. 132, 282-293
  13. Grossman, A.D. and R. Losick. 1988. Extracellular control of spore formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 85, 4369-4373
  14. Hoch, J.A. 1993. Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu. Rev. Microbiol. 47, 441-465
  15. Karow, M.L. and P.J. Piggot. 1995. Construction of gusA transcriptional fusion vectors for Bacillus subtilis and their utilization for studies of spore formation. Gene 163, 69-74
  16. Kenney, T.J. and C.P. Jr. Moran. 1987. Organization and regulation of an operon that encodes a sporulation-essential sigma factor in Bacillus subtilis. J. Bacteriol. 169(7), 3329-3339
  17. Kim, D.Y., C.H. Cha, W.S. Oh, Y.J. Yoon, and J.W. Kim. 2004. Expression of the promoter for the maltogenic amylase. J. Microbiol. 42(4), 319-327
  18. Kroos, L., B. Zhang, H. Ichikawa, and Y.T. Yu. 1999. Control of sigma factor activity during Bacillus subtilis sporulation. Mol. Microbiol. 31, 1285-1294
  19. Lang, D.R., J. Felix, and D.G. Lundgren. 1972. Development of a membrane-bound respiratory system prior to and during sporulation in Bacillus cereus and its relation to membrane structure. J. Bacteriol. 110, 968-977
  20. Meyer, T.E. and M.D. Kamen. 1982. New perspectives on c-type cytochromes. Adv. Protein. Chem. 35, 105-212
  21. Milhaud, P. and G. Balassa. 1973. Biochemical genetics of bacterial sporulation. IV. Sequential development of resistances to chemical and physical agents during sporulation of Bacillus subtilis. Mol. Gen. Genet. 125, 241-250
  22. Molle, V., M. Fujita, S.T. Jensen, P. Eichenberger, J.E. Gonzalez- Pastor, J.S. Liu, and R. Losick. 2003. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50, 1683-1701
  23. Nicholson, W.L. and G.H. Chambliss. 1985. Isolation and characterization of a cis-acting mutation conferring catabolite repression resistance to $\alpha$-amylase synthesis in Bacillus subtilis. J. Bacteriol. 161, 875-881
  24. Otten, M.F., J. van der Oost, W.N. Reijnders, H.V. Westerhoff, B. Ludwig, and R.J. van Spanning. 2001. Cytochromes $c_{550},\;c_{552},\; and\;c_1$ in the electron transport network of Paracoccus denitrificans: redundant or subtly different in function? J. Bacteriol. 183, 7017-7026
  25. Pearson, I.V., M.D. Page, R.J. van Spanning, and S.J. Ferguson. 2003. A mutant of Paracoccus denitrificans with disrupted genes coding for cytochrome $c_{550}$ and pseudoazurin establishes these two proteins as the in vivo electron donors to cytochrome cd1 nitrite reductase. J. Bacteriol. 185, 6308-6315
  26. Sadoff, H.L. 1966. Glucose dehydrogenase - soluble. I. Bacillus cereus. Methods Enzymol. 9, 103-107
  27. Schaeffer, P. 1969. Sporulation and the production of antibiotics, exoenzymes and exotoxins. Bacteriol. Rev. 33, 48-71
  28. Schiött, T., M. Throne-Holst, and L. Hederstedt. 1997. Bacillus subtilis CcdA-defective mutants are blocked in a late step of cyto-chrome c biogenesis. J. Bacteriol. 179, 4523-4529
  29. Schobert, M. and H. Görisch. 1999. Cytochrome $c_{550}$ is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa: cloning and sequencing of the genes encoding cytochrome $c_{550}$ and an adjacent acetaldehyde dehydrogenase. Microbiology 145 (Pt 2), 471-481
  30. Setlow, P. 1993. Spore structure proteins, p. 801-809. In A.L. Sonenshein (ed.), Bacillus subtilis and Other Gram-Positive Bacteria; Biochemistry, Physiology and Molecular Genetics. American Society for Microbiology, Washington, D.C
  31. Sonenshein, A.L. 1989. Metabolic regulation of sporulation and other stationary phase phenomena, p. 109-130. In I. Smith, R.A. Slepecky, and P. Setlow (eds.), Regulation of Prokaryotic Development. American Society for Microbiology, Washington, D.C
  32. Spiegelman, G.B., T.H. Bird, and V. Voon. 1995. Transcription regulation by the Bacillus subtilis response regulator Spo0A, p. 159-179. In J.A. Hoch and T.J. Silhavy (eds.), Two-Component Signal Transduction. American Society for MicrobiologyWashington, D.C
  33. Stephenson, K. and J.A. Hoch. 2002. Evolution of signalling in the sporulation phosphorelay. Mol. Microbiol. 46, 297-304
  34. Van Dessel, W., L. Van Mellaert, N. Geukens, E. Lammertyn, and J. Anne. 2004. Isolation of high quality RNA from Streptomyces. J. Microbiol. Methods 58, 135-137
  35. van der Oost, J., C. von Wachenfeld, L. Hederstedt, and M. Saraste. 1991. Bacillus subtilis cytochrome oxidase mutants: biochemical analysis and genetic evidence for two $aa_3$-type oxidases. Mol. Microbiol. 5, 2063-2072
  36. von Wachenfeldt, C. and L. Hederstedt. 1990a. Bacillus subtilis 13- kilodalton cytochrome $c_{550}$ encoded by cccA consists of a membrane- anchor and a heme domain. J. Biol. Chem. 265, 13939-13948
  37. von Wachenfeldt, C. and L. Hederstedt. 1990b. Bacillus subtilis holo-cytochrome $c_{550}$ can be synthesized in aerobic Escherichia coli. FEBS Lett. 270, 147-151
  38. von Wachenfeldt, C. and L. Hederstedt. 1993. Physico-chemical characterisation of membrane-bound and water-soluble forms of Bacillus subtilis cytochrome $c_{550}$. Eur. J. Biochem. 212, 499-509
  39. Yoon, K.Y., E.E. Woodams, and Y.D. Hang. 2004. Probiotication of tomato juice by lactic acid bacteria. J. Microbiol. 42(4), 315-318
  40. Yu, J. and N.E. Le Brun. 1998. Studies of the cytochrome subunits of menaquinone: cytochrome c reductase (bc complex) of Bacillus subtilis. Evidence for the covalent attachment of heme to the cytochrome b subunit. J. Biol. Chem. 273, 8860-8866